DOI QR코드

DOI QR Code

Nitrogen Dissolution in CaO-SiO2-Al2O3-MgO-CaF2 Slags

CaO-SiO2-Al2O3-MgO-CaF2 슬래그의 질소용해도에 관한 연구

  • Baek, Seoung Bae (Department of Materials Science and Engineering, Chungnam National University) ;
  • Lim, Jong Ho (Heavy Plate R&D Team, HYUNDAI-STEEL Technical Research Center) ;
  • Jung, Woo Jin (Woojin Eng., Co., Ltd.) ;
  • Lee, Seoung Won (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2013.06.15
  • Accepted : 2014.01.20
  • Published : 2014.02.27

Abstract

The nitrogen solubility and nitride capacity of $CaO-SiO_2-Al_2O_3-MgO-CaF_2$ slag systems were measured by using gas-liquid equilibration at 1773K. The nitrogen solubility of this slag system decreased with increasing CO partial pressure, with the linear relationship between nitrogen contents and oxygen partial pressure being -3/4. This system was expected to show two types of nitride solution behavior. First, the nitrogen solubility decreased to a minimum value and then increased with the increase of CaO contents. These mechanisms were explained by considering that nitrogen can dissolve into slags as "free nitride" at high basicities and as "incorporated nitride" within the network at low basicities. Also, the basicity of slag and nitride capacity were explained by using optical basicity. The nitrogen contents exhibited temperature dependence, showing an increase in nitrogen contents with increasing temperature.

Keywords

References

  1. T. H. Lee and S. J. Kim, J. Kor. Inst. Met. & Mater., 35(9), 1146 (1997).
  2. J. H. Lim and S. W. Lee, J. Kor. Inst. Met. & Mater., 42(1) 102 (2004).
  3. D. J. Min, J. of the Korean Inst. of Met. & Mater., 33(9), 1205 (1995).
  4. F. Tomiokan and H. Suito : Testzu-to-Hagane, 260 (1992).
  5. E. Martinez and N. Sano, Met. Trans., 21B, 97 (1990).
  6. E. T. Turkdogan, Physical Chemistry of High Temperature Technology, Academic Press. New York. (1980).
  7. T. Shimoo, H. Kimura and M. Kawai, J. of the Jap. Inst. of Metals, 35, 417 (1971). https://doi.org/10.2320/jinstmet1952.35.5_417
  8. K. Schwerdfeger, W. Fix and H. G. Schubert, Ironmaking and Steelmaking, 5, 67 (1978).
  9. H. S. Song, C. H. Rhee, D. J. Min and B. D. You, J. Kor. Inst. Met. & Mater., 33(11), 1514 (1995).
  10. E. Martinez and N. Sano, Met. Trans., 21B, 105 (1990).
  11. K. Ito and R. J. Fruehan, Met. trans., 19B, 419 (1988).
  12. E. Martinez and N. Sano, Steel Res., 58, 485 (1987). https://doi.org/10.1002/srin.198700253
  13. J. R. Beckett, Geochimica et Cosmochimica Acta, 66(1), 93 (2002). https://doi.org/10.1016/S0016-7037(01)00751-7
  14. K. Schwerdfeger and H. G. Schubert, Met. Trans., 5B, 535 (1977).
  15. D. J. Min and R. J. Fruehan, Met. Trans. 21B, 1025 (1990).
  16. T. Shimoo, H. Kimura and M. Kawai, J. of the Jap. Inst. of Metals, 36, 723 (1972). https://doi.org/10.2320/jinstmet1952.36.8_723
  17. J. A. Duffy, M. D. Ingram, and I. D. Sommerville, J. Chem. Soc. Faraday Trans., 174, 1410 (1978).
  18. D. R. Gaskell, Trans. Iron and Steel Inst. Jpn., 22, 997 (1982). https://doi.org/10.2355/isijinternational1966.22.997