DOI QR코드

DOI QR Code

Research on Acceleration Mechanism of Inflight Particle and Gas Flow Effect for the Velocity Control in Vacuum Kinetic Spray Process

진공상온분사(VKS) 공정에서의 비행입자 가속 기구 및 속도제어를 위한 가스 유량 효과에 관한 연구

  • Park, Hyungkwon (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University) ;
  • Kwon, Juhyuk (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Illjoo (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University) ;
  • Lee, Changhee (Kinetic Spray Coating Laboratory(NRL), Division of Materials Science and Engineering, Hanyang University)
  • 박형권 (한양대학교 신소재공학부) ;
  • 권주혁 (한양대학교 신소재공학부) ;
  • 이일주 (한양대학교 신소재공학부) ;
  • 이창희 (한양대학교 신소재공학부)
  • Received : 2013.12.31
  • Accepted : 2014.02.05
  • Published : 2014.02.27

Abstract

Vacuum kinetic spray(VKS) is a relatively advanced process for fabricating thin/thick and dense ceramic coatings via submicron-sized particle impact at room temperature. However, unfortunately, the particle velocity, which is an important value for investigating the deposition mechanism, has not been clarified yet. Thus, in this research, VKS average particle velocities were derived by numerical analysis method(CFD: computational fluid dynamics) connected with an experimental approach(SCM: slit cell method). When the process gas or powder particles are accelerated by a compressive force generated by gas pressure in kinetic spraying, a tensile force generated by the vacuum in the VKS system accelerates the process gas. As a result, the gas is able to reach supersonic speed even though only 0.6MPa gas pressure is used in VKS. In addition, small size powders can be accelerated up to supersonic velocity by means of the drag-force of the low pressure process gas flow. Furthermore, in this process, the increase of gas flow makes the drag-force stronger and gas distribution more homogenized in the pipe, by which the total particle average velocity becomes higher and the difference between max. and min. particle velocity decreases. Consequently, the control of particle size and gas flow rate are important factors in making the velocity of particles high enough for successful deposition in the VKS system.

Keywords

References

  1. J. Akedo, J. Therm. Spray Technol., 17(2), 181 (2008). https://doi.org/10.1007/s11666-008-9163-7
  2. B. D. Hahn, Y. L. Cho, D. S. Park, J. J. Choi, J. H. Ryu, J. W. Kim, C. W. Ahn, C. Park, H. E. Kim and S. G. Kim, J. Biomater. Appl., 27(5), 587 (2013). https://doi.org/10.1177/0885328211415723
  3. J. J. Choi, D. S. Park, B. G. Seong and H. Y. Bae, Int. J. Hydrogen Energy, 37, 9809 (2012). https://doi.org/10.1016/j.ijhydene.2012.03.148
  4. J. H. Ryu, B. D. Hahn, J. J. Choi, W. H. Yoon, B. K. Lee, J. H. Choi and D. S. Park, J. Am. Ceram. Soc., 93(1), 55 (2010). https://doi.org/10.1111/j.1551-2916.2009.03391.x
  5. O. Y. Kwon, H. J. Na, H. J. Kim, D. W. Lee and S. M. Nam, Nanoscale Res. Lett., 7, 261 (2012). https://doi.org/10.1186/1556-276X-7-261
  6. J. Akedo, J. Am. Ceram. Soc., 89(6), 1834 (2006). https://doi.org/10.1111/j.1551-2916.2006.01030.x
  7. D. M. Chun and S. H. Ahn, Acta Mater., 59, 2693 (2011). https://doi.org/10.1016/j.actamat.2011.01.007
  8. F. Cao, H. K. Park, G. Y. Bae, J. A. Heo and C. H. Lee, J. Am. Ceram. Soc., 96(1), 40 (2013). https://doi.org/10.1111/jace.12101
  9. H. K. Park, J. A. Heo, F. Cao, J. H. kwon, K. C. Kang, G. Y. Bae and C. H. Lee, J. Therm. Spray Technol., 22(6), 882 (2013). https://doi.org/10.1007/s11666-013-9923-x
  10. F. Cao, H. K. Park, J. A. Heo, J. H. Kwon and C. H. Lee, J. Therm. Spray Technol. 22(7), 1109 (2013). https://doi.org/10.1007/s11666-013-9963-2
  11. A. Iwata and J. Akedo, J. Cryst. Growth, 275, e1269 (2005). https://doi.org/10.1016/j.jcrysgro.2004.11.082
  12. D. W. Lee, H. J. Kim and S. M. Nam, J. Korean Phys. Soc., 57(4), 1115 (2010). https://doi.org/10.3938/jkps.57.1115
  13. D. W. Lee and S. M. Nam, J. Ceram. Process Res., 11(1), 100 (2010).
  14. D. W. Lee, H. J. Kim, Y. H. Kim, Y. H. Yun and S. M. Nam, J. Am. Ceram. Soc., 94(9), 3131 (2011). https://doi.org/10.1111/j.1551-2916.2011.04493.x
  15. C. W. Kim, J. H. Choi, H. J. Kim, D. W. Lee, C. Y. Hyun and S. M. Nam, Ceram. Int., 38, 5621 (2012). https://doi.org/10.1016/j.ceramint.2012.04.003
  16. H. Assadi, F. Gärtner, T. Stoltenhoff and H. Kreye, Acta Mater., 51, 4379 (2003). https://doi.org/10.1016/S1359-6454(03)00274-X
  17. T. Schmidt, F. Gartner, H. Assadi and H. Kreye, Acta Mater., 54, 729 (2006). https://doi.org/10.1016/j.actamat.2005.10.005
  18. G. Y. Bae, Y. Xiong, S. Kumar, K. C. Kang and C. H. Lee, Acta Mater., 56, 4858 (2008). https://doi.org/10.1016/j.actamat.2008.06.003
  19. M. Lebedev, J. Akedo, K. Mori and T. Eiju, J. Vac. Sci. Technol. A, 18(2), 563 (2000). https://doi.org/10.1116/1.582226
  20. H. Katanoda and K. Matsuo, Mater. Trans., 47(7), 1620 (2006). https://doi.org/10.2320/matertrans.47.1620
  21. M. W. Lee, J. J. Park, D. Y. Kim, S. S. Yoon, H. Y. Kim, D. H. Kim, S. C. James, S. Chandra, T. Coyle, J. H. Ryu, W. H. Yoon and D. S. Park, J. Aerosol Sci., 42, 771 (2011). https://doi.org/10.1016/j.jaerosci.2011.07.006
  22. D. M. Chun, J. O. Choi, C. S. Lee and S. H. Ahn, Surf. Coat. Technol., 206, 2125 (2012). https://doi.org/10.1016/j.surfcoat.2011.09.043
  23. Ansys Fluent User's Guide, Release 14.0, ANSYS, Inc., November 2011 (2011).
  24. W. Y. Li, H. Liao, H. T. Wang, C. J. Li, G. Zhang and C. Coddet, Appl. Surf. Sci., 253, 708 (2006). https://doi.org/10.1016/j.apsusc.2005.12.157
  25. K. Naoe, M. Nishiki and A. Yumoto, J. Therm. Spray Technol., 22(8), 1267 (2013). https://doi.org/10.1007/s11666-013-0031-8