DOI QR코드

DOI QR Code

Characteristics of Plasma Sprayed BSCCO Superconductor Coatings with Annealing Time After Partial Melt Process

BSCCO 플라즈마 용사피막의 부분용융열처리 후 어닐링 시간에 따른 초전도 특성

  • Park, Jeong-Sik (Department of Ophthalmic Optics, Daegu Health College) ;
  • Lee, Seon-Hong (Corporate R&D Center, Samsung SDI Co. Ltd.) ;
  • Park, Kyeung-Chae (Department of Materials Science and Metallurgy, Kyungpook National University)
  • 박정식 (대구보건대학교 안경광학과) ;
  • 이선홍 (삼성SDI 중앙연구소 기반기술랩) ;
  • 박경채 (경북대학교 금속신소재공학과)
  • Received : 2014.01.10
  • Accepted : 2014.02.21
  • Published : 2014.02.27

Abstract

$Bi_2Sr_2CaCu_2O_x$(Bi-2212) and $Bi_2Sr_2Ca_2Cu_3O_y$(Bi-2223) high-Tc superconductors(HTS) have been manufactured by plasma spraying, partial melt process(PMP) and annealing treatment(AT). A Bi-2212/2223 HTS coating layer was synthesized through the peritectic reaction between a 0212 oxide coating layer and 2001 oxide coating layer by the PMP-AT process. The 2212 HTS layer consists of whiskers grown in the diffusion direction. The Bi-2223 phase and secondary phase in the Bi-2212 layer were observed. The secondary phase was distributed uniformly over the whole layer. As annealing time goes on, the Bi-2212 phase decreases with mis-orientation and irregular shape, but the Bi-2223 phase increases because a new Bi-2223 phase is formed inside the pre-existing Bi-2212 crystals, and because of the nucleation of a Bi-2223 phase at the edge of Bi-2212 crystals by diffusion of Ca and Cu-O bilayers. In this study the spray coated layer showed superconducting transitions with an onset Tc of about both 115 K, and 50 K. There were two steps. Step 1 at 115 K is due to the diamagnetism of the Bi-2223 phase and step 2 at 50 K is due to the diamagnetism of the Bi-2212 phase.

Keywords

References

  1. R. Inoue, H. Kitano, T. Hanaguri and A. Maeda, Adv. Superconductivity, 11(1), 121 (1998).
  2. H. Nadifi, A. Ouali, C. Grigorescu, H. Faqir, O. Monnereau, L. Tortet, G. Vacquier and C. Boulesteix, Supercond. Sci. Technol., 13(8), 1174 (2000). https://doi.org/10.1088/0953-2048/13/8/312
  3. M. D. Sumption, X. Peng, E. Lee, F. Buta, M. Tomsic and E. W. Col l ings, IEEE Trans. Appl. Supercond., 13(3), 3486 (2003). https://doi.org/10.1109/TASC.2003.812365
  4. Y. Feng, Y. Zhao, A. K. Pradhan, L. Zhou, P. X. Zhang, X. H. Liu, P. Ji, S. J. Du, C. F. Liu and Y. Wu, Supercond. Sci. Technol., 15(1), 12 (2002). https://doi.org/10.1088/0953-2048/15/1/303
  5. Y. Yamada, F. Yamashita, K. Wada and K. Tachikawa, J. Jpn. Inst. Matals. 61(9), 836 (1997).
  6. V. V. Pankov and P. Strobel, Physica C, Superconductivity, 235-240(1), 333 (1994). https://doi.org/10.1016/0921-4534(94)91390-0
  7. A. Y. Ilyushechkin, T. Yamashita, L. Boskovic and I. Mackinnon, Supercond. Sci. Technol., 17(10), 1201 (2002).
  8. A. Y. Ilyushechkin, T. Yamashita and I. Mackinnon, Physica C 377(3), 362 (2002). https://doi.org/10.1016/S0921-4534(01)01288-6
  9. S. H. Cho, S. H. Lee and K. C. Park, J. Kor. Int. Met. Mater., 44(7), 497 (2006).