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Abstract 
 

Massive antenna array is an attractive candidate technique for future broadband wireless 

communications to acquire high spectrum and energy efficiency. However, such benefits can 

be realized only when proper channel information is available at the transmitter. Since the 

amount of the channel information required by the transmitter is large for massive antennas, 

the feedback is burdensome in practice, especially for frequency division duplex (FDD) 

systems, and needs normally to be reduced. In this paper a novel channel feedback reduction 

scheme based on the theory of distributed compressive sensing (DCS) is proposed to apply to 

massive antenna arrays with spatial correlation, which brings substantially reduced feedback 

load. Simulation results prove that the novel scheme is better than the channel feedback 

technique based on traditional compressive sensing (CS) in the aspects of mean square error 

(MSE), cumulative distributed function (CDF) performance and feedback resources saving. 
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1. Introduction 

Large scale multiple-input multiple-output (MIMO) techniques, dubbed as Large–scale 

MIMO or Massive-MIMO, is a promising means to meet the growing demands for larger 

capacity and improved quality-of-service of next-generation wireless communication systems 

[1][2]. A tremendous spatial multiplexing gain and array gain can be attained in 

Massive-MIMO systems. By beamforming technique we can steer the power from a large 

number of transmit antennas to the targeted direction, which in turn increases the link capacity 

greatly under a fixed transmission power, or equivalently, remarkably decreases the required 

transmission power to maintain the desired symbol error rate performance. Massive MIMO 

systems also have the potential to reduce the operational power consumption at the transmitter 

and enable the use of low-complexity schemes for suppressing multi-user interference [3]. 

To acquire the potential benefits of Massive-MIMO, the transmitter must have the 

instantaneous channel state information (CSI). The transmitter of time division duplexing 

(TDD) systems can acquire the CSI easily by channel reciprocity. However, in frequency 

division duplexing (FDD) systems, a dedicated feedback link for the receiver to report CSI is 

needed, and a lot of spectrum resources for CSI feedback is consumed. Even so, FDD is 

universally considered to be more effective for systems with symmetric traffic of 

delay-sensitive applications.  

This paper investigates the feasibility of relieving the heavy CSI feedback load in 

Massive-MIMO systems. If conventional CSI feedback reduction methods, such as vector 

quantization or codebook-based approaches, are exploited in Massive-MIMO, the codebook 

size has to be enlarged massively to arrest fine-grain spatial channel structures, which in turn 

results in more heavier feedback overhead. Therefore, codebook-based design methods may 

not be suitable for Massive-MIMO. In recent years, the theory of compressive sensing (CS) 

[4][5] has been applied in various circumstances of signal processing and broadband 

communications, in which the signal is sparse or compressible. In [6][7], CS has been 

employed for the receiver to feed channel quality information (CQI) of OFDM subcarriers. In 

[8], CS has been proposed to support feedback protocols for opportunistic multi-user MIMO 

downlink transmission. In [9], CS has been applied to channel feedback protocols for 

spatially-correlated Massive-MIMO systems. In [10], a compressed analog feedback strategy 

has been studied for spatially correlated massive MIMO system. 

Recently, the theory of distributed compressive sensing (DCS) is originated, and it has 

been applied to some contexts of signal processing and MIMO communications, where the 

signal satisfies joint sparse model (JSM). In [11], DCS has been employed for multi-user 

time-correlated MIMO channel information feedback. Different from the aforementioned 

prior work, this paper employed the strong spatial correlation in massive closely-packed 

antenna arrays to reduce the feedback load. In our paper, the DCS is used to develop a novel 

scheme for CSI feedback reduction, which allows CSI recovery with acceptable accuracy at 

the transmitter and is even better than the CS-based scheme proposed in [9]. 

The remainder of this paper is organized as follows. Section 2 provides the system model, 

as well as a review of DCS operation. In Section 3, DCS is applied to the design of the channel 

feedback scheme. Simulation results are presented in Section 4. Finally, a conclusion is drawn 

in Section 5. 
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2. DCS Background and System Model 

2.1. Correlated MIMO Channel Model 

This paper considers a point-to-point Massive-MIMO wireless communication system with Mt 

(>>1) transmit antennas and Mr (>>1) receive antennas. For simplicity, a uniform linear array 

at the transmitter and the receiver is assumed. The spatially-correlated MIMO channel model 

is studied on the previous work [9]. The Mr×Mt spatially-correlated MIMO channel matrix can 

be modeled as, 

                                                       

 

1 1

2 2
1

RX iid TX

RXtr
H R H R

R
，                                         (1) 

where Hiid is an Mr×Mt matrix with independent and identically distributed (i.i.d) zero-mean, 

unit variance, complex Gaussian random entries; RTX and RRX are the correlation matrices at 

the transmitter side and the receiver side, respectively. We assume that uniformly-spaced 

linear antenna arrays are installed at both sides of the radio link, and therefore each i-th row 

and j-th column entry of these matrices (RTX and RRX) is given by the Jakes model as follows, 



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ij

d
Jr

2
0 ，                                                                   (2) 

where dij is the distance between the two antennas,  is the carrier wavelength, and J0 denotes 

zero-order Bassel function of the first kind. Given that the scope of this paper is focused on 

CSI compression, we assume H=[ H1,H2,…,HMr]’ can be perfectly estimated at the receiver, 

and certain channel information, such as H itself or any spatial signature extracted from H, can 

be sent to the transmitter via an ideal (error-free) feedback link. 

2.2. Review of Distributed Compressive Sensing and Simultaneous 
Orthogonal Matching Pursuit Algorithm 

The distributed compressive sensing theory, which is capable of solving simultaneous 

sparse approximation problem, rests on a new concept termed of the joint sparsity of a signal 

ensemble. DCS enables new distributed coding algorithms that employ both intra-signal and 

inter-signal correlation structures. DCS is immediately applicable to a range of problems in 

sensor networks and arrays. 

[12] proposed a greedy pursuit algorithm called Simultaneous Orthogonal Matching 

Pursuit (SOMP) to solve joint sparsity problem of DCS and tested the algorithm with three 

types of input signal. Each type of input signal is a variant on the form 

 , 1,2,j j jx s v j J   .                                       (3) 

where xj is a target signal and the number of which is J, vj is random noise and sj called sparse 

signal or compressible signal can be expressed using a linear combination of K atoms (Each 

atom is denoted w , where w is drawn from an index set  ) chosen from the N dimensions 

(K<<N) dictionary, which is denoted as 
1 2

[ , ,..., ]
Nw w w  Ψ  and also called 

sparsifying-basis. K is called sparse degree. The form of the first type of input signal is, 

1

, 1,2,
kj

K

j kj w

k

x j J 


  .                                    (4) 

For each signal xj, K atoms are distributed independently and uniformly from the 
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dictionary, and the coefficients kj  are nonzero but different. SOMP algorithm searches for 

the best K atoms to represent each signal xj, which is a linear combination of the K atoms. 

The second type of input signal has the form, 

1

, 1,2,
k

K

j kj w

k

x j J 


  .                                              (5) 

For all J signals, the K atoms are the same, but the coefficients kj  are different. 

The third type has the form 

1

, 1,2,
k

K

j k w j

k

x v j J 


   .                                    (6) 

Each signal xj is corrupted by i.i.d additive white Gaussian noise vj. 

In this paper, the first type is applied to compressive feedback of CSI for massive antenna 

arrays system with spatial correlation structure. 

3. Massive-MIMO Channel Feedback Based On Distributed Compressive 

Sensing 

We assume that in a Massive-MIMO system, antenna arrays at both transmitter and receiver 

are on the same platforms and closely-packed. Due to correlations among the antennas on eack 

platform, it is expected from signal processing theory that the channel information has a sparse 

representation in the spatial domain. Based on this insight, instead of sending H on feedback 

link directly in each feedback time period, the DCS techniques delineated in the above Section 

could be applied to feedback compression. We note that the common operations for H 

feedback are carried out separately for real and imaginary parts in all proposed methods of this 

paper. For the sake of convenience, the notation H  is used to denote the target signal in the 

rest of this paper, which represents either the real part or imaginary part of H.  

We have assumed in the above content that the receiver has perfect knowledge on H and it 

should be ideally shared with the transmitter through feedback. In order to save the spectrum 

resources required by the feedback, the information of H needs to be compressed into 

comparatively less measurements. In [9], CS operation was used to compress the feedback 

information into MCS measurements in each feedback time period. In this paper, the feedback 

information is assumed to be compressed into MDCS measurements via DCS technique. 

Just like the operation in [9], in our DCS-based compression scheme, H should firstly be 

vectorized into an N×1 (N=Mr×Mt) vector,  

( )h vec H .                                                                 (7) 

In traditional CS method, h is encoded into a measurement vector as the compressed 

feedback content, 

y hΦ ,                                                                       (8) 

where Φ  is an MCS×N measurement matrix, the elements of which are random variables 

generated in accordance with distributions such as Gaussian or Bernoulli. Thus, the channel 

vector h is compressed into an MCS×1 measurement vector y. Due to the expected sparsity in 

the spatial domain, MCS can be made to be much smaller than N, while allowing CSI 

reconstruction at the transmitter to satisfy the required accuracy. Both the transmitter and the 

receiver are assumed to be aware of the elements of Φwith preconfigurations. In order to use 
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CS to reconstruct CSI, transmitter needs to know a sparsifying-basis (Ψ ) of h. 

S hΨ ,                                                                          (9) 

where S is the sparse representation of h, and Ψ  is an N×N sparsifying-basis. The 

transmitter is able to recover the channel information ĥ  through the following l1-norm 

minimization problem, 

1

min . .
l

T

S s t y S

h S





ΦΨ

Ψ
,                                    (10) 

The above minimization problem is typically solved by optimization algorithms such as 

linear programming (LP), basic pursuit (BP), and orthogonal matching pursuit (OMP). OMP 

is generally considered as the best at the compromise of computation complexity and recovery 

accuracy. In order to recover S exactly with a high probability, OMP algorithm needs 

sufficiently large number of measurements MCS which means it is at least 4K. The feedback 

load is thereby reduced to a compression ratio of /CS CSM N  .  

With DCS technique, SOMP algorithm needs at most K+1 measurements to exactly recover 

S at each feedback period, the feedback load is thereby reduced to a compression ratio of 

/DCS DCSM N  . On the other hand, SOMP can bring about better recovery performance for 

it solves simultaneously the joint sparsity problem with J (>=2) input signals, however, it 

needs more memory resources to store multiple input signals. 

The SOMP algorithm description of DCS-based compression technique proposed in this 

paper is as follows. 

1. Initialize the residual matrix R0=y, the index set 0   , and the iteration counter t=1. 

2. Find an index k  that solves the easy optimization problem 

1

1

max ,
J

k j w
w

j

R e 




 . 

We use ej to denote the j-th canonical basis vector. 

3. Set  1k k k   . 

4. Determine the orthogonal projector Pk onto the span of the atoms indexed in k . 

5. Calculate the new approximation and residual: 

k k

k k

A P S

R y A



 
. 

6. Increment t, and return to Step 2 if k K . 

The schematic of the proposed DCS-based feedback method is illustrated in Fig. 1. 

The choice of the sparsifying-basis Ψ  plays a key role in recovery performance. 

Generally speaking, it is desirable to select a sparsifying-basis that provides a more sparse 

representation (fewer nonzero elements in S, or smaller K) of h. In this paper, we consider 
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Fig. 1.  The schematic of the proposed DCS-based Massive MIMO channel feedback 

scheme, where re(Hp) and im(Hp) represent the real and imaginary parts of Hp, respectively.  

 

two-dimensional discrete cosine transform (2D-DCT). As mentioned above, the elements of 

H  are expected to be strongly correlated in both spatial and frequency domain. In order to 

achieve a sparse representation of H  in the spatial-frequency domain by fully exploiting such 

correlation structure, 2D-DCT can be employed as the sparsifying-basis. A DCT matrix with L 

rows L columns is denoted as CL, thus, the 2D-DCT matrix used in this paper can be written 

as
t rM MC C , therefore,  

 
t r

T

M MC C Ψ ,                                                         (11) 

where   is Kronecker product. 

The sparse representation of h is 

  ( )
t r

T

M MS C C vec  H .                                            (12) 

Generally speaking, the sparse degree is defined as the number of nonzero elements in the 

sparse representation vector. In fact, we notice that only a few elements in the vector S are of 

comparatively large numerical values and the others are of comparatively small numerical 

values but may not be exactly zero. In order to ensure recovery performance being good, 

enough elements should be selected. We define Snz as the number of selected large elements, 

which is assumed be the real sparse degree in this paper. 

The recovery error is defined as, 

2

2

ˆ
l

re

l

h h

P E
h

 
 

  
 
 

.                                                     (13) 
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We assume that ,m thP  is the threshold of recovery error, i.e., the largest tolerable recovery 

error, which means that the case with ,re m thP P  is correct recovery. The probability of correct 

recovery is  

 ,Prr re m thP P P  .                                                   (14) 

We furthermore define the recovery-correct performance as the maximum recovery error 

level ,m thP  that is met for 1% of all recovery information. 

To compare the recovery-correct performance of different feedback-compressive schemes, 

we use cumulative distribution function (CDF) defined as 

 (P ) Pm re mCDF P P  .                                             (15) 

   is defined as the compression ratio, which can be expressed as  

                                              100%comM

M
   ,                                                                  (16) 

where Mcom denotes the needed feedback resources with CS-based or DCS-based feedback 

method, and M denotes the feedback resources without any compressive methods.  

The feedback resources will be saved if a kind of compressive feedback method is adopted. 

We define saving  as the feedback resources saving, which can be expressed as 

com 100%saving

M M

M



  .                                            (17) 

  

In order to realize a certain probability of correct recovery, such as 0.99rP  , CS-based 

feedback method and DCS-based feedback method could bring different cost saving of 

feedback resources compared to the feedback resources without any compressing methods, 

which are denoted as _saving CS  and _saving DCS ，respectively. 

_

_

100%

100%

CS
saving CS

DCS
saving DCS

M M

M

M M

M






 


 

,                                        (18) 

where MCS denotes the feedback resources with CS-based feedback method and MDCS  denotes 

that with DCS-based feedback method. 

4. Simulation Results 

In this section, we present some simulation results for a massive MIMO system with 

Mt=Mr=32, a uniform normalized antenna-spacing (d/ ) of 50. The recovery performance of 

DCS-based compressive scheme and the traditional CS-based scheme are compared. The real 

sparse degree 20,40,60,80,100nzS （ ）. 

Fig. 2 and Fig. 3 show respectively the average normalized MSE of CS-based and 

DCS-based MIMO channel feedback recovery using 2D-DCT sparsifying-basis under 

different compression ratios with different real sparse degrees. Fig. 4 shows the average 

normalized MSE of both CS-based and DCS-based schemes together under different 

compression ratios. 
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Fig. 2. The average normalized MSE of CS-based MIMO channel feedback recovery using 

2D-DCT sparsifying-basis under different compression ratios with different real sparse 

degrees. 
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Fig. 3. The average normalized MSE of DCS-based MIMO channel feedback recovery 

using 2D-DCT sparsifying-basis under different compression ratios with different real sparse 

degrees. 
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Fig. 4. The average normalized MSE of DCS-based and CS-based MIMO channel feedback 

recovery using 2D-DCT sparsifying-basis under different compression ratios with different 

real sparse degrees.  

 

Fig. 2 and Fig. 3 show that exact recovery can be achieved with both DCS-based and 

CS-based schemes. From Fig. 2 and Fig. 3, both the MSE performance of CS-based scheme 

and that of DCS-based scheme become better as the real sparse degree or the compression 

ratio becomes larger. However, from Fig. 4 it is very clear that DCS-based scheme has smaller 

average normalized MSE than CS-based scheme, which means that DCS-based scheme has 

relatively better recovery performance. 

Fig. 5, Fig. 6, Fig. 7, Fig. 8, and Fig. 9 show the CDF of the threshold of recovery error 

Pm of CS-based scheme under different compression ratios with the real sparse degree Snz 

being 20, 40, 60, 80 and 100 respectively. 
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Fig. 5. The CDF of the threshold of recovery error Pm of CS-based scheme under different 

compression ratios with the real sparse degree Snz=20. 
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Fig. 6. The CDF of the threshold of recovery error Pm of CS-based scheme under different 

compression ratios with the real sparse degree Snz =40. 
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Fig. 7. The CDF of the threshold of recovery error Pm of CS-based scheme under different 

compression ratios with the real sparse degree Snz =60. 
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Fig. 8. The CDF of the threshold of recovery error Pm of CS-based scheme under different 

compression ratios with the real sparse degree Snz =80. 
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Fig. 9. The CDF of the threshold of recovery error Pm of CS-based scheme under different 

compression ratios with the real sparse degree Snz =100. 

 

From Fig. 5, Fig. 6, Fig. 7, Fig. 8 and Fig. 9 we all can see that when the real sparse degree 

is a constant, the Pm of CS-based scheme becomes smaller as the compression ratio becomes 

larger. The compression ratio becoming larger means that the occupied feedback resource 

becomes much more. It is easy to understand that the recovery-correct performance will 

improve as feedback resource becomes much more. Comparing Fig. 5, Fig. 6, Fig. 7, Fig. 8 

and Fig. 9, it is obvious to find that the Pm of CS-based scheme becomes smaller as the real 

sparse degree becomes larger. The real sparse degree becoming larger means that the more 

elements within the sparse vector are selected. The recovery-correct performance will surely 

improve as the real sparse degree becomes larger. 

Fig. 10 and Fig. 11 show the CDF of the threshold of recovery error Pm of DCS-based 

scheme under different compression ratios with the real sparse degree Snz being 40 and 60 

respectively. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014                                 120 

Copyright ⓒ 2014 KSII 

0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Pm

C
D

F

DCS,Snz=40

η=20%

η=30%

η=40%

η=50%

η=60%

η=70%

η=80%

η=90%

η=100%

 
Fig. 10. The CDF of the threshold of recovery error Pm of DCS-based scheme under 

different compression ratios with the real sparse degree Snz =40. 
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Fig. 11. The CDF of the threshold of recovery error Pm of DCS-based scheme under 

different compression ratios with the real sparse degree Snz =60. 

 

Both Fig. 10 and Fig. 11 show that when the real sparse degree is a constant, the Pm of 

DCS-based scheme under different compression ratios becomes smaller as the compression 

ratio becomes larger. Comparing Fig. 10 and Fig. 11 we can see that the Pm of DCS-based 

scheme becomes smaller as the real sparse degree becomes larger. We can also do some 
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comparisons among Fig. 6 and Fig. 10, or Fig. 7 and Fig. 11. The Pm of DCS-based scheme is 

obviously much smaller than that of CS-based scheme, therefore the CDF performance of 

DCS-based scheme is better than that of CS-based scheme. 

Fig. 12 shows the feedback resources saving of both DCS-based and CS-based schemes 

under different real sparse degrees. 
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Fig. 12. The feedback resources saving of both DCS-based and CS-based schemes under 

different real sparse degrees. 

 

Fig. 12 shows that the resources saving of DCS-based feedback scheme is obviously more 

than that of CS-based feedback scheme. In other words, DCS-based compressive feedback  

scheme needs comparatively less feedback resources than CS-based one. 

5. Conclusion 

In this paper, a novel channel feedback reduction scheme based on the theory of distributed 

compressive sensing is proposed to apply to massive antenna arrays with spatial correlation, 

which permits the transmitter to obtain channel information with acceptable accuracy but with 

substantially reduced feedback load. Simulation results show that DCS-based compressive 

scheme has better MSE performance and CDF performance than that of traditional CS-based 

compressive scheme, and DCS-based channel feedback scheme needs comparatively less 

feedback resources than CS-based scheme. 

 

References 

[1] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, 

“Scaling up MIMO: opportunities and challenges with very large arrays,” arXiv: 1201.3210vl, 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 1, Jan. 2014                                 122 

Copyright ⓒ 2014 KSII 

IEEE Signal Processing Mag., 2013. http://dx.doi.org/10.1109/MSP.2011.2178495 

[2] P. Judge. (2011) GreenTouch shows low power wireless. eWeek Europe. [Online]. Available: 

http://www.eweekeurope.co.uk/news/greentouchshows-low-power-wireless-19719 

[3] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station 

antennas,” IEEE Trans. Wireless Commun., vol. 9, pp. 3590–3600, Nov. 2010. Article (CrossRef Link) 

[4] E. J. Candès, J. Romberg, and T. Tao, “Robust uncertainty principles: exact signal reconstruction 

from highly incomplete frequency information,” IEEE Trans. Inf. Theory, vol. 52, pp. 489-509, 

Feb. 2006. Article (CrossRef Link) 

[5] D. L. Donoho, “Compressed sensing,” IEEE Trans. Info. Theory, vol. 52, no. 4, pp. 1289-1306, 

Sep.2006. Article (CrossRef Link) 

[6] H. Q. Gao, R. F. Song and J. X. Zhao, “Compression of CQI feedback with compressive sensing in 

adaptive OFDM systems,” WCSP, 2010, pp. 1-4. http://dx.doi.org/10.1109/WCSP.2010.5633511 

[7] Y. Li and R. Song, “Novel schemes of CQI feedback compression based on compressive sensing 

for adaptive OFDM transmission,” KSII Trans. Internet and Info. Systems, vol. 5, pp. 703–719, 

Apr. 2011. Article (CrossRef Link) 

[8] L. M. Davis, S. V. Hanly, P. Tune, and S. R. Bhaskaran, “Multi-antenna downlink broadcast using 

compressed-sensed medium access,” in Proc. of IEEE Int. Conf. Commun. (ICC), Cape Town, 

South Africa, May 2010. http://dx.doi.org/10.1109/ICC.2010.5501819 

[9] P. H. Kuo, H. T. Kung and P. A. Ting, “Compressive Sensing Based channel feedback Protocols 

for Spatially-Correlated Massive Antenna Arrays,” WCNC, 2012, pp. 492-497. 
http://dx.doi.org/10.1109/WCNC.2012.6214417 

[10] J. H. Lee and S. H. Lee, “A compressed analog feedback strategy for spatially correlated massive 

MIMO systems,” VTC Fall, 2012, pp. 1-6. http://dx.doi.org/10.1109/VTCFall.2012.6399253 

[11] Y. Li and R. Song, “A new compressive feedback scheme based on distributed compressed sensing 

for time-correlated MIMO channel,” KSII Trans. Internet and Info. Systems, vol. 6, pp. 580-592, 

Feb. 2012. Article (CrossRef Link) 

[12] J. A. Tropp, A. C. Gilbert, and M. J. Strauss, “Simultaneous sparse approximation via greedy 

pursuit,” ICASSP 2005. http://dx.doi.org/10.1109/ICASSP.2005.1416405 

 

 

 

 

 

 

 

 

Huanqin Gao received the B.S. and M.S. degree from North China Electric 

Power University in 2002 and Nanjing University of Posts & 

Telecommunications in 2005, respectively. She is currently a lecturer and 

pursuing the Ph.D. degree in the College of Communication & Information 

Engineering, NUPT. Her current research interests include multiple-input 

multiple-output (MIMO) systems, multi-carrier transmission technology, limited 

channel feedback scheme and compressive sensing.  

 

 

 

 

Rongfang Song received the B.S. and M.S. degree from Nanjing University of 

Posts and Telecommunications (NUPT) in 1984 and 1989, respectively, and the 

Ph.D. degree from Southeast University (SEU) in 2001, all in 

Telecommunications Engineering. From 2002–2003, he was a Research 

Associate at the Department of Electronic Engineering, City University of Hong 

Kong. Since 2002, he has been a Professor in the Department of 

Telecommunications Engineering at NUPT. His research interests include 

broadband wireless communications and advanced signal processing.  

 

 

 

http://dx.doi.org/10.1109/MSP.2011.2178495
http://dx.doi.org/10.1109/TWC.2010.092810.091092
http://dx.doi.org/10.1109/TIT.2005.862083
http://dx.doi.org/10.1109/TIT.2006.871582
http://dx.doi.org/10.1109/WCSP.2010.5633511
http://dx.doi.org/10.3837/tiis.2011.04.005
http://dx.doi.org/10.1109/ICC.2010.5501819
Article(CrossRef%20Link)
http://dx.doi.org/10.1109/VTCFall.2012.6399253
http://dx.doi.org/10.3837/tiis.2012.02.008
http://dx.doi.org/10.1109/ICASSP.2005.1416405

