
KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 646
Copyright ⓒ 2014 KSII

Integrating Software Security into

Agile-Scrum Method
Imran Ghani1, Zulkarnain Azham1, and Seung Ryul Jeong2

1Faculty of Computing, Universiti Teknologi Malaysia (UTM), Malaysia
[e-mail: imran@utm.my, zulkarnain.azham@gmail.com]

2Graduate School of Business IT, Kookmin University, Korea
[e-mail: srjeong@kookmin.ac.kr]

*Corresponding Author: Seung Ryul Jeong

Received November 23, 2013; accepted January 21, 2014; published February 28, 2014

Abstract

Scrum is one of the most popular and efficient agile development methods. However, like
other agile methods such as Extreme Programming (XP), Feature Driven Development (FDD),
and the Dynamic Systems Development Method (DSDM), Scrum has been criticized because
of lack of support to develop secure software. Thus, in 2011, we published research proposing
the idea of a security backlog (SB). This paper represents the continuation of our previous
research, with a focus on the evaluation in industry-based case study. Our findings highlight an
improved agility in Scrum after the integration of SB. Furthermore, secure software can be
developed quickly, even in situations involving requirement changes of software. Based on
our experimental findings, we noticed that, when integrating SB, it is quite feasible to develop
secure software using an agile Scrum model.

Key Words: Scrum, Software Security, Agile Methodologies, Security Backlog

A preliminary version of this paper was presented at APIC-IST 2013 and was selected as an outstanding paper.

http://dx.doi.org/10.3837/tiis.2014.02.0019

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 647

1. Introduction and Problem Background
Agile methodologies such as Scrum, Extreme Programming (XP), Feature Driven

Development (FDD), and the Dynamic Systems Development Method (DSDM), have gained
enough attention for software development in recent years [1]. A number of organizations
[2,3] that practice agile methods suggest that agile methods help during the software
development process by emphasizing rapid development statements [4,5]. In fact, agile
methods are more flexible and help to reduce risks of project failure. However, they need to
follow several rules related to the agile manifesto, including those concerning less
documentation and team member interactions, which provide for appropriate communication
with customers and other users. However, some researchers and practitioners [4,6,7]
highlighted a critical software problem – software security [8,10] and [11]. As mentioned in
the abstract, like other agile methods, the Scrum model does not provide guidelines for dealing
with the security aspects of software [12]. The original Scrum model does not include software
security planning from the start [13]. This means that security practices cannot be
implemented by the Scrum team. As a result, the agile team may produce vulnerable software
that can be exploited by attackers [8]. On the contrary, if the Scrum agile team concentrates on
solving software security issues, the agility of the Scrum process may be affected [14].

Thus, this study attempts to discover whether or not security practices such as SB can work
with the Scrum agile model. If so, then developers who focus on developing secure software
using Scrum may apply the proposed SB.

1.1. Degree of Agility
Based on a survey and assessment of various contemporary definitions, Qumer and

Henderson-Seller [15] offer the following definition for the agility of any entity
(www.agilemanifesto.org):

“Agility is a persistent behavior or ability of a sensitive entity that exhibits flexibility to
accommodate expected or unexpected changes rapidly, follows the shortest time span, uses
economical, simple and quality instruments in a dynamic environment and applies updated
prior knowledge and experience to learn from the internal and external environment.”

The aforementioned definition can then be simplified by a researcher into five key
elements of agility that represent flexibility, speed, leanness, learning and responsiveness. To
validate the performance of an agile model, the degree of agility needs to be evaluated by
measuring the following elements.

• Flexibility: The agile method should be flexible enough to welcome a change in

requirements during any phase. A lack of flexibility will create a serious crisis in the
agile software process. In other words, we can say that this represents the ability to
respond to any change at any given time.

• Speed: As the speed of software delivery is one of the most important elements in the
agile manifesto, it needs to be considered as an element of agility [16].

• Leanness: This represents the elimination of waste or the doing of more with less.
Through maximizing the utilization of all resources, and the elimination of unnecessary
resources, all tasks are streamlined. At the same time, however, the level of quality
should be maintained [17].

• Learning: Focuses on improvement during and after product development when
software had been delivered to the client.

http://www.agilemanifesto.org/

648 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

• Responsiveness: This means responding to any change, either within the team, or in the
requirements of the software itself [15].

Any software development process that implements the whole of agility, as stated above,
can be considered to be an agile method. However, its degree of agility needs to be evaluated
before it can be considered to be a suitable agile model.

2. Literature Review

2.1. Security Issues and Agility Concerns

In general, existing security standards and practices do not easily align with the agile
manifesto due to the strictness of the security requirements phase. In fact, the security
practices that are still widely followed were developed before the agile manifesto was
introduced. The current reality is that modern software projects undergo constant changes,
which leads to process re-iteration, or in other words, repetition in the development process.
This new phenomenon creates a dilemma in that there are no established security standards
that consider agility, which limits the potential of any agile model, including those that use
Scrum [7,18].

2.2. Security Issues and Scrum

In particular, Scrum itself has a number of limitations related to security. These are stated below.
• As the Scrum release cycle is too short, there is not enough time for the

development team to address security requirements for each release.
• Although the inclusion of security elements in the existing Scrum does not present

a significant issue, issues do arise when such inclusions affect the process
characteristics or agility of Scrum.

• The authors, Kevin Brady [19] and Mikkosiponen et al. [20], state that knowledge
monopolies in a Scrum team are the main factors causing an absence of
documentation during the requirement planning. This happens due to the team
players not having enough skill in regards to security.

• The lack of guidelines in the collection of security requirements is also a factor, as
there is no requirements freeze in agile as there is in the other conventional SDLCs
[7].

• One of the research groups, known as Securosis [22], found that, although the
project manager played a major role in Scrum, their lack of security awareness and
pressure to complete the project within a minimal amount of time affected the
entire process. For example, threat analysis needed to be included in the
requirements capturing/analysis guidelines. However, it was either not included at
all or the Scrum Product Owner (PO) could not complete it due to a lack of time
[22]. The same issue was faced during security testing in sprint phases. As a result,
the agility of the process was affected [21].

In order to overcome these issues, this study attempts to suggest ways in which the Scrum

process can be suitably combined with security practices. Previous research [23] proposed a
solution for this situation. However, there was not enough data regarding how the proposed
solution affected Scrum agility. In this paper, we will present our findings regarding these
issues.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 649

2.3. Software Security Principles

Recapping Security Principles. Security principles are the primary methods used to
determine methods for securing software. They are universal guidelines adopted by every
developer and project planner, and have been adopted by practitioners and experts in the
security field in order to mitigate risks in the architecture, design, implementation, testing and
maintenance phases. As illustrated in Table 1, security principles act as a guideline for a
number of existing systems and approaches. As shown in the table, much research has been
proposed showing solutions that satisfy some or all of the security principles. The ‘X’ symbol
is used when researchers have not mentioned the security principle, while the‘√’ symbol is
used when it has been mentioned.

2.4. Software Security Engineering in Phases

Security activities generally include three phases. These are known as the requirement,
development and testing phases. A software engineer can sabotage the software at any point in
its development life cycle through the usage of intentional exclusions from, or inclusions in.
Sabotage can also be performed by modifying the requirements specification, the threat
models, the design documents, the source code, the assembly and integration framework, the
test cases and test results, or the installation and configuration instructions and tools. The
secure development practices described in this book are, in part, designed to help reduce the
exposure of software to insider threats during the development process. For more information
on this aspect, see "Insider Threats in the SDLC" [13].

2.4.1. Security during requirement phase: There are a few existing techniques that can be
used for eliciting the security requirements. Some of these have been created with attention
paid to security, while others have been created in outdated requirement engineering style.
These can be enhanced to add a security element. Existing techniques for the security
requirement include Misuse cases [34], Soft Systems Methodology [25], Quality Function
Deployment [26], Controlled Requirements Expression [35], Issue-based information systems
[28], Joint Application Development [29], Feature-oriented domain analysis [36], Critical
discourse analysis [30] and the Accelerated Requirements Method [31]. It is impossible to
create secure software without keeping security in mind from the beginning. Preparation must
be started during the requirement phase because at the development phase, developers simply
follow what is stated in the requirements. For the scrum method, there is an existing security
method proposed by EAST Methodology [33], which is integrated in Scrum. In this method,
we can see there is no special backlog for the security part. Instead, the security analysis is
combined in the product backlog. In Scrum, the product backlog should not be too complex, as
this will affect the leanness agility.

650 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

Table 1. Security Principles

Le
as

t p
riv

ile
ge

Fa

ili
ng

 se
cu

re
ly

Se

cu
rin

g
th

e
w

ea
ke

st

lin
k

D
ef

en
ce

 in
 d

ep
th

Se
pa

ra
tio

n
of

pr

iv
ile

ge

Ec
on

om
y

of

m
ec

ha
ni

sm

Le
as

t c
om

m
on

m

ec
ha

ni
sm

R
el

uc
ta

nc
e

to
 tr

us
t

N
ev

er
 a

ss
um

in
g

th
at

yo

ur
 se

cr
et

s a
re

 sa
fe

co
m

pl
et

e
m

ed
ia

tio
n

Ps
yc

ho
lo

gi
ca

l
ac

ce
pt

ab
ili

ty

Pr
om

ot
in

g
pr

iv
ac

y
D

es
ig

n
Pr

in
ci

pl
es

Julia H. Allen et. al., 2009 √ √ √ √ √ √ √ √ √ √ √ √ X
Us-Cert √ √ √ √ √ √ √ √ √ √ √ √ √
Open Web Application
Security Project (OWASP) X √ X √ X √ X √ X X √ X √

Gary McGraw and John
Viega, 2009 √ √ √ √ √ √ √ √ √ √ √ √ √

NIST √ √ √ √ √ √ √ √ √ √ √ √ √
SANS √ √ √ √ √ √ √ √ √ √ √ √ √
IBM √ √ √ √ √ √ √ √ √ √ √ √ √
Saltzer and Schroeder √ √ X X √ √ √ X X √ √ X √

2.4.2. Existing Secure Software Development Lifecycle: Microsoft has developed a guide for
the SDL agile process. However, it is commonly believed that because SDL was originally
created for Microsoft’s big showcase box products such as Windows and SQL Server, it only
works for those kinds of products. This is, of course, patently false. Virtually every Microsoft
product and online service, large or small, follows the SDL. Many other organizations outside
of Microsoft are also successfully implementing the SDL. However, while the content of the
SDL and its requirements and recommendations may be universal, the structure of the SDL as
originally designed is more suited to long running waterfall or spiral style development
methodologies [32].

Table 2. Analysis of Existing Models Secure Software Development
Phases Model Activity Security

Principles
Requirements

• Misuse cases [34]

• Quality Function Deployment [26]

• Controlled Requirements Expression [27]

• Issue-based information systems [28]

• Joint Application Development [29]

• Feature-oriented domain analysis [36]

• Critical discourse analysis [30]

• Accelerated Requirements Method [31].

Analysis of the
possible threat

Not Mentioned

Development Microsoft Security Development Lifecycle
for Agile Development version 1.0

Adds security
requirement at all
sprint.
Security Testing.

Not Mentioned

http://emergentchaos.com/the-security-principles-of-saltzer-and-schroeder

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 651

Testing Extended Agile Security Testing(EAST)

Adds security
requirement.
Documentation.
Security Testing.

Not mentioned but
the activity can be
representing the
security principle
needed.

The table above shows that the existing agile models that are used to develop secure

software do not clearly mention or integrate the security principles in the requirement,
development or testing phases. The X symbol means the corresponding model does not solve
the issue and provide a solution, while the√ symbol means that it does solve the issue and
provide a solution.

Table 3 shows an analysis of existing secure software development which compares the
Microsoft and EAST models. This analysis has been obtained from a recent literature review
(2005 - 2010).

In order to address some of the highlighted issues, we previously proposed the idea of SB
for Scrum security practices [23]. For the sake of the reader, we will illustrate our previously
proposed SB in the next section. However, the main objective of this paper is to analyze the
effectiveness of the SB and provide insights obtained from an industry-based case study.

Table 3. Analysis of Existing Secure Software Development Lifecycle

Sources Issues Models Proposed Solutions
MS EAST

[32] Traditional Security Development Life
Cycle is does not fit with Agile.

√ √ Proposes an enhancement
existing Agile security life
cycle.

[37] In order to overcome the security aspect
in SDLC like missing a security phase in
scrum, proposes to integrate with
another development methodologies.

X X Imports some practices;
example, pair programming
from eXtreme Programming.

[7] Security must be considered from the
start of a development process, and it is
“anti-freeze requirement”.

X √ Create a security activity
from the beginning

[38] To add the threat analysis part in
planning sprint is not suitable because it
is too large effort to squeeze into sprint
session.

X √ Threat analysis from sprint

[22] The average sprint duration of two
weeks is simply too short for security
test.

X X Suggests security testing for
only selected features.

[19, 20] Knowledge monopolies of security staff
due to the absence of documentation for
security part.

√ X Make a comprehensive
documentation but simple
based on security principle.

[38] “Inject” certain security related activities
into the scrum.

√ Creates a security activities

[14] Need to integrate a security activity with
all agile activities.

 √ Suggests security activities
in all phases.

652 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

3. Analysis of Proposed Security Backlog (SB)

3.1. Validation and Evaluation

In this section our previously proposed SB and its integration into the Scrum model is
analyzed and the authors explain the overall enhanced Scrum model.

As mentioned in Table 4, existing frameworks do not offer a solution for the security
issues in Scrum. Therefore, our aim is to merge two new elements into the existing Scrum.
These are 1) a new security component known as SB and 2) a new role known as Security
Master (SM). The SM is in charge of the SB during the Scrum lifecycle.

Table 4. Security Description in Each Phase [23]
Product Backlog The Product Backlog is the master list of all functionality desired in the

product. When using Scrum, it is not necessary to start a project with a
lengthy, upfront effort to document all requirements. The
documentation for security will be absence here because of the team
want produce the simple documentation.

Release Backlog A release backlog is a subset of the product backlog that is planned to be
delivered in the coming release. Partition the product backlog a release
backlog for each release. The release backlog is the subset of product
requirements that will deliver in a given release. The prioritize feature
that want to be release quickly will in a danger if not analyze it with the
threat analysis phase.

Sprint Backlog The sprint backlog is the list of tasks that the Scrum team is committing
that they will complete in the current sprint. Here, the time release has
been decided, and any addition in security part, will be hard to manage
in time.

Testing and
shippable phase

Here all product has been integrated and will be testing for a final. When
it comes to this phase and the security part will cost a lot of time and
money here to maintain.

The √ symbol means that the phases should practice the respective security principle, while

the X symbol means that phases do not need the respective security principle. Based on
analysis in Table 3 and security principle roles in Table 2 introduced by various researchers,
we come to a conclusion in Table 5. Table 5 shows analysis regarding how security
guidelines should be aligned to each related backlog and phase. The chosen factor is based on
security principles stating that nearly all principles can provide guidelines for requirement,
development and testing activities.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 653

Table 5. Relation between Phases and Security Principle
 Security Principle

Phase

Le
as

t p
riv

ile
ge

Fa
ili

ng
 se

cu
re

ly

Se
cu

rin
g

th
e

w
ea

ke
st

lin

k
D

ef
en

ce
 in

 d
ep

th

Se
pa

ra
tio

n
of

 p
riv

ile
ge

Ec
on

om
y

of
 m

ec
ha

ni
sm

Le

as
t c

om
m

on

m
ec

ha
ni

sm

R
el

uc
ta

nc
e

to
 tr

us
t

N
ev

er
 a

ss
um

in
g

th
at

yo

ur
 se

cr
et

s a
re

 sa
fe

co

m
pl

et
e

m
ed

ia
tio

n
Ps

yc
ho

lo
gi

ca
l

ac
ce

pt
ab

ili
ty

Pr

om
ot

in
g

pr
iv

ac
y

D
es

ig
n

Pr
in

ci
pl

es

Product Backlog √ √ √ √ √ √ √ √ √ √ √ √ √
Release Backlog √ √ √ √ √ √ √ X X √ X √ X
Sprint Backlog √ X √ √ √ √ √ X X √ √ √ X
Testing and
 shippable phase

√ √ √ √ √ √ √ √ √ √ √ √ √

The enhanced Scrum model in Fig. 1 has two additional components. These are:
1. A Security Backlog (SB) that manages security in Scrum. (please refer to Fig. 2)
2. A Security Master (SM)that handles security in Scrumand is in-charge ofthe SB.

Fig. 1. Enhanced Scrum process with additional SB and SM

As illustrated in Fig. 1, the process flow is shown below.
1. The requirements are translated into product backlog and go through SB.
2. Here, the SM figures out certain features in the product backlog that require security

attention.
3. The Security Master marks (dotted in illustrations) the selected features in the security

backlog. The SM creates a document of its activity for use as a reference during the

654 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

Security Backlog

10

Security Test

e.g:
• Cross site scripting

Security Test

e.g:
• SQL injection
• Buffer overflow

5 11

Security Test

e.g:
• Buffer Overflow

development and testing phases. The marked security concerns are noted in the sprint
backlog for the attention of the developers.

4. Testing is verified in sprint phases by the security master.

Fig. 2. Process Security Backlog in Scrum

Fig. 3. Release Backlog Highlighted with Security Related Features

As shown above, Fig. 3 displays SQL injection and buffer overflow attack possibilities
assigned by the SM. Since the agile method documentation needs to be as simple as that
suggested in The Systems Security Engineering Capability Maturity Model (SSE-CMM) and
CC, the SB also helps to produce a simple but comprehensive document. At the same time, it
attempts to provide clear information regarding the security risks.

4. Evaluation

4.1. Evaluation of agility in Each Phase
The three phases involved in this Scrum enhancement model are the requirement phase,

development phase and testing phase. As discussed in the beginning, the agility is the variable
to be evaluated for each phase.

4.1.1. Requirement Phase and Degree of Agility. The requirement phase is conducted by the
Product Owner. After collecting the requirements, the selected features are populated in the
Product Backlog (hereafter, PB). The PB is given to the Security Master (SM) to evaluate and
then to the SB. The security backlog is evaluated using this experience and a conclusion is
reached based on the agility provided. If agility is affected, the product owner (PO), Scrum
Master and SM suggest improvements.

• Speed: Overall, speed does not affect the delivery deadline when a security backlog is
implemented in the requirement phase. Since the SM has an additional workforce
available, they can identify if previously developed security libraries/classes can be

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 655

reused. This information may be provided in the description of security requirements
in the SB. Another way in which the SB can save time for the PO is by having
guidelines without the need for research, or by finding a specific security requirement.
Since the PO and SM have simple guidelines to follow in terms of security, the results
of security requirements can be generated quickly. In conclusion, the security backlog
would not affect the overall delivery deadline. It can also save time and produce swift
security results.

• Flexibility: In short, flexibility refers to adaptability to expected change requirements.
In the beginning, it is difficult to be flexible due to the lack of information within the
security backlog. However, this information is also simple enough to analyze.
Although flexibility can be affected in the beginning, with time it can be recovered.

• Leanness: The security backlog can complete a task within the shortest available time
span because of its simplicity. Due to this simplicity, the security backlog can provide
a proper understanding to the PO in a short amount of time. As a result, leanness will
not be affected.

• Learning: If the description in a security backlog is user friendly, it can maintain or
improve upon the current knowledge of the PO. Since the history of previous
requirements can be maintained inside the SB, it can also provide experience to a new
PO. As a result, the security backlog in the requirement phase will have a positive
learning curve.

4.1.2. Development Phase and Degree of Agility. The development phase is evaluated by the
SM and system developers in the team. The security backlog illustrated in figure 5.2 is
evaluated using their experience. If the agility is affected, they suggest improvements.

• Speed: The security backlog does not cause any slowdown in developing the system
within the required timeframe. However, sometimes it depends on the flexibility or
the complexity of a business case. Referring to the description provided in the SB can
also help the developers save time in tracing any errors or bugs that have occurred in
the sub-modules. By using the SB, the developers can also add or modify any new
code to any of the sub-modules for implementation of security. As a result, the speed
is generally not affected.

• Flexibility: The developer can accommodate expected changes or user requirements
within any sub modules during the development period. For unexpected changes the
SB can be updated from time to time.

• Leanness: Since the backlog will have guidelines and standards for the developers,
they can still maintain simplified codes during development to produce quality
products through the help of SB. Developers can avoid adding any un-used or useless
codes when developing by using the SB. This can be done in the beginning and can
then be reused.

• Learning: Security backlogs can maintain or improve the current knowledge of the
developers regarding the product or system that is being developed. Since the
descriptions can help new developers develop new code, the security backlogs also
provide experience to developers regarding the previously developed products.

656 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

4.1.3. Testing Phase and Degree of Agility. The testing phase is evaluated by the team’s
tester. The SB, as illustrated in, is consulted due to their experience. If affected is agility, the
tester suggests improvements.

• Speed: The implementation of SB in Scrum development improves the tester’s work
flow. Use of the security backlog can save time during the testing phase in selecting
the appropriate method, since the requirements will be focused on testing SQL
injection, buffer flow, and so on. The testing process will become faster and easier as
the tester comes to more quickly understand the features "to be tested" from the
backlog. With this information provided in the SB, all testing can produce quick
results.

• Flexibility: The SB is not rigid and offers the flexibility to add, modify or delete the
security features scheduled to be tested.

• Leanness: The SB helps the tester complete tasks and activities in the shortest amount
of time by going through the major list.

• Learning: The tester gains new knowledge as information inside the security backlog
is stored and updated. This saved experience will allow a new tester to improve and
learn more quickly.

4.2. Scrum Master’s Evaluation about Responsiveness

The Scrum Master, or project manager, is the one responsible for evaluating the overall
responsiveness of an agile development process using SB. It has been noted that SB did not
affect the responsiveness of the overall project. SB is sensitive and can adapt to the
environment. It has been applied on a small scale and accepted by an experienced team using
the Scrum method. Their feedback is shown in Table 6.

Table 6. Industrial Feedback

Agility Team Role
SM PO Developer Tester

Speed SW delivery on time - YES YES YES
Help saving time - YES YES YES

Produce result - YES YES YES
Flexibility Method accommodate expected changes - YES YES YES

Method accommodate unexpected changes - YES YES YES
Leanness Shortest time span - YES YES YES

Economical - YES YES YES
Simple and quality production - YES YES YES

Learning Update prior knowledge - YES YES YES
Provides experience - YES YES YES

Responsiv
eness

Sensitiveness YES - - -
Adaptability in team, YES - - -

Based on the industry feedback shown in Table 6, it is safe to say that SB can be

implemented as part of the enhancement process in a Scrum method selected for security. This
information has been used to calculate agility using the 4-DAT framework, in order to
compare agility both before and after security backlog implementation was performed
according to our model.

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 657

4.2.1. Evaluating Degree of Agility.

In order to evaluate the degree of agility, the 4-DAT framework has been used in our case
study. Table 7 shows the degree of agility using Scrum without implementing the SB. In
reference to the phases in Table 7:

• The 0 in column four means leanness was not achieved by the Scrum master. This
means the PB was not effective enough to practice security for the Scrum master.

• The 1 in other columns means that the other agility features were achieved.
• 7/7 is the total of the values in columns 1, 2, 4, 5. It means the relevant agilities in the

columns were achieved.
• 0/7 is the total of the values in column 3. It means the relevant agility in the column

was achieved.

Table 7. Degree of Agility before Enhancement

Scrum Agility Features

Flexibility Speed Leanness Learning Responsiveness Total

Phases

Pre-Game 1 1 0 1 1 4

Development 1 1 0 1 1 4

Post-Game 0 1 0 0 0 1

Total 2 3 0 2 2 9

Degree of Agility 2/3 3/3 0/3 2/3 2/3 (2+3+0+2+3)/(3*5)

Practices

Scrum Master 1 1 0 1 1 4

Scrum Teams 1 1 0 1 1 4

Product Backlog 1 1 0 1 1 4

Sprint 1 1 0 1 1 4

Sprint planning

meeting

1 1 0 1 1 4

Daily scrum meeting 1 1 0 1 1 4

Sprint review 1 1 0 1 1 4

Total 7 7 0 7 7 28

Degree of Agility 7/7 7/7 0/7 7/7 7/7 28/(7*5)

In order to calculate agility the following formula has been adopted:

Overall SUM of 1 for each Agility Feature in Each Practice
Number of Agility Features * Number of Practices = Degree of Agility Practices (1)

658 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

Thus, Degree of Agility of Practices = 28/(7*5) = 0.80. The formula, label 0 and 1 were
also implemented in Tables 7 and 8 using the same technique.

Table 7 shows the difference from Table 8, which includes the security backlog. The
industrial experts who evaluated the SB in Table 7 agree that the SB can be implemented and
does not affect the five criteria of agility i.e., flexibility, speed, leanness, learning and
responsiveness. Based on the conclusion of Table 7’s industrial evaluation, the security
backlog considered in Table 8 can be performed. Thus, number 1 should be put inside the
blank space for all agility.

Table 8. Degree of Agility after Enhancement

Scrum Agility Features

Flexibility Speed Leanness Learning Responsiveness Total

Phases

Pre-Game 1 1 0 1 1 4

Development 1 1 0 1 1 4

Post-Game 0 1 0 0 0 1

Total 2 3 0 2 2 9

Degree of Agility 2/3 3/3 0/3 2/3 2/3 9/(3*5)

Practices

Scrum Master 1 1 0 1 1 4

Scrum Teams 1 1 0 1 1 4

Product Backlog 1 1 0 1 1 4

Security Backlog 1 1 1 1 1 5

Sprint 1 1 0 1 1 4

Sprint planning meeting 1 1 0 1 1 4

Daily scrum meeting 1 1 0 1 1 4

Sprint review 1 1 0 1 1 4

Total 8 8 1 8 8 33

Degree of Agility 8/8 8/8 1/8 8/8 8/8 33/(8*5)

 The data in Table 9 refers to the activity in practices for Scrum practices. The degree
of agility has improved from 0.80 before implementation to 0.83 after implementation.

Table 9. Calculation Degree of Agility
Process and Practices Scrum (Before implementation) Scrum (After implementation)

Phases 9/15 = 0.60 9/15 = 0.60
Practices 28/35=0.80 33/40 = 0.83

The degree of agility is illustrated in Figure 4 adds a comparison before and after the

security backlog has been added. The phases and practices have been calculated, and the result

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 659

in Fig. 4 shows the practices clearly.
Based on Fig. 4, the degree of agility has improved in the practices from 0.8 (before

implementation) to 0.83 (after implementation). The improvement shown after
implementation shows that the security backlog does not add any delay to speed, flexibility,
leanness, learning or responsiveness if the security applied is part of the Scrum method. This
shows that such implementation is relevant and can be performed without any fear of affecting
agility negatively.

Fig. 4. Comparison Degree of Agility

5. Conclusion

After preliminary analysis, comparison, and collection of literature such as journals, books,
magazines and case studies, we were able to successfully identify the issues related to the
Scrum method. Through further research, we were able to discover the relationship between
the security principles and security in each of the Scrum phases. The second issue, then, was to
enhance the Scrum model. The enhanced Scrum model that we have proposed has been
evaluated in the requirement, development and testing phases. These research objectives were
completed successfully. An agile team presented evaluations and feedback in regards to the
enhancement model gathered from industry events. Team members who had experience using
the agile model (team leaders, requirement engineers, developers and testers) evaluated
whether agility was affected or not. Based on their evaluations, the research was considered
relevant, and possible to implement. We also evaluated the degree of agility before and after
enhancement using the 4-DAT framework.

The results showed that agility is improved if the security backlog (SB) is implemented,
which means that agility is not negatively affected if the SB is added to the Scrum model. It is
appropriate to clarify that, in this study, the agility of phases has not been considered. Thus,
this is out of the scope of this study and can be considered in future research. In addition, the
purpose of this study was not to prove that PB is unsuitable. On the contrary, the intention was
to discover, after the enhancement of PB, how far Scrum agility was affected overall.

660 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

Acknowledgements

We wish to thank the teams at Twin System Company, Malaysia for their tremendous

contribution in conducting the case study and Ministry of Science, Technology and Innovation
(MOSTI), Malaysia to financially supporting this project under research grant vot 4S028.

References

[1] Dyba, T. and Dingsoyr, T., “Empirical studies of agile software development: A
systematic review,” Information and Software Technology, Vol.50, pp.833-859, 2008.
Article (CrossRef Link)

[2] Mchugh, O. and Conboy, k. and Lang, M., “Agile practices: The Impact on Trust in
Software Project Teams,” IEEE Software, Vol.29, pp.71-76, 2012. Article (CrossRef
Link)

[3] Slaten, k., Droujkova, M., Berenson, S. B., Williams, L. and Layman, L., “Understanding
Student Perceptions of Pair Programming and Agile Software Development
Methodologies: Verifying a Model of Social Interaction,” IEEE Agile Conference,
pp.323-330, 2005. Article (CrossRef Link)

[4] Amir S. S., Amir A. S. and Fereidoon S., “Toward Empowering Extreme Programming
from an Architectural Viewpoint,” in Proc. of 9th International Conference XP 2008,
Vol.9, pp.222-223, 2008. Article (CrossRef Link)

[5] Breivold, H. P., Sundmark, D., Wallin, P.and Larsson, S., “What Does Research Say
about Agile and Architecture?,” IEEE Software Engineering Advances, pp.32-37, 2010.
Article (CrossRef Link)

[6] Wäyrynen, J., Bodén, M. and Boström, G., “Security engineering and eXtreme
programming: an impossible marriage?,” in Proc. of 4th Conference on Extreme
Programming and Agile Methods, Vol.3134, pp.117-128, 2004. Article (CrossRef Link)

[7] Xiaocheng G., Richard F. P. and Fiona P., “Extreme Programming Security Practices”, in
Proc. of 8th International Conference XP 2007, Vol.4536, pp.226-230, 2007. Article
(CrossRef Link)

[8] Sani, A., Firdaus, A., Jeong, S. R. and Ghani, I., “A Review on Software Development
Security Engineering using Dynamic System Method(DSDM),” International Journal of
Computer Applications, Vol.69, No.25, pp.33-44, 2013. Article (CrossRef Link)

[9] Ghani, I., Yasin, N. I. B., “Software Security Engineering in Extreme Programming
Methodology: A Systematic Literature Review,” Journal Science International Lahore,
Vol.25, No.2, pp.215-221, 2013. Article (CrossRef Link)

[10] Firdaus, A., Ghani, I., Yasin, N. I. M., “Developing Websites using Feature Driven
Development: A Case Study,” Journal of Clean Energy Technologies, Vol.1, No.4,
pp.322-326, 2013. Article (CrossRef Link)

[11] Sani, A., Ghani, I., Jeong, S. R., “Secure Dynamic System Development Method (Sdsdm)
Model For Secure Software Development,” Journal, Science International Lahore,
Special Issue, 1059-64, 2013. Article (CrossRef Link)

[12] Sutherland, J. and Schwaber, K., “The Scrum Papers: Nut, Bolts, and Origin of an Agile
Framework,” Scrum Inc, 2011. Article (CrossRef Link)

[13] Julia, H. A., Sean, B., Robert, J., Ellison., Gary Mcgraw. And Nancy R.,“Software
Security Engineering: A Guide for Project Manager,” Addison-Wesley Professional,
2008. Article (CrossRef Link)

http://dx.doi.org/10.1016/j.infsof.2008.01.006
http://dx.doi.org/10.1109/MS.2011.118
http://dx.doi.org/10.1109/MS.2011.118
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1609839&tag=1
http://www.researchgate.net/publication/221592499_Toward_Empowering_Extreme_Programming_from_an_Architectural_Viewpoint
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5615620&tag=1
http://link.springer.com/chapter/10.1007%2F978-3-540-27777-4_12
http://link.springer.com/chapter/10.1007%2F978-3-540-73101-6_42
http://link.springer.com/chapter/10.1007%2F978-3-540-73101-6_42
http://www.ijcaonline.org/archives/volume69/number25/12131-8527
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCsQFjAA&url=http%3A%2F%2Fwww.sci-int.com%2Fpdf%2F4090614897-215-224-%2520sci-intl-14-03-20130-izaty-Ghani-%2520paid%252025-2-13.pdf&ei=XXXvUs2JDsiekwXV8YHICg&usg=AFQjCNGchch-RRtlYsNM_7Ji6sZr-8VZyQ&bvm=bv.60444564,d.dGI&cad=rjt
http://dx.doi.org/10.7763/JOCET.2013.V1.73
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCkQFjAA&url=http%3A%2F%2Fwww.sci-int.com%2Fpdf%2F14914203885--1059-1064--Sani-Imran--.pdf&ei=9nXvUt-rF4HnkAXrzIH4Dw&usg=AFQjCNF6h5cPE5qdndVjw_bjCxetvHsAvQ&cad=rjt
https://www.zotero.org/joslash/items/itemKey/NRV6WRHP
http://dl.acm.org/citation.cfm?id=1386212

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 661

[14] Keramati, H. and Mirian-Hosseinabadi, S. H., “Integrating Software Development
Security Activities with Agile Methodologies,” in Proc. of IEEE/ACS International
Conference on Computer Systems and Applications, pp.749-754, 2008. Article (CrossRef
Link)

[15] Qumer, A. and Henderson-Sellers, B., “An evaluation of the degree of agility in six agile
methods and it applicability for method engineering,” Information and Software
Technology, Vol.50, pp.280-295, 2008. Article (CrossRef Link)

[16] Walker, R., “Improving Software Economics: Top 10 Principles of Achieving Agility At
Scale,” Improving Software Economics white paper, 2009. Article (CrossRef Link)

[17] Lowell, L., Carmen, Z. and Erdogmus, H., “Extreme Programming and Agile Methods –
XP/Agile Universe 2004,” in Proc. of 4th Conference on Extreme Programming and
Agile Methods, pp.121, 2004. Article (CrossRef Link)

[18] Erdogan, G., Meland, P. H. and Mathieson, D., “Security Testing in Agile Web
Application Development – A Case Study Using the East Methodology,” in Proc. of 11th
International Conference XP2010, Vol.48, pp.14-27, 2010. Article (CrossRef Link)

[19] Brady, K., “AGILE/SCRUM Fails to get to grips with Human Psychology,” at
http://www.claretyconsulting.com/it/comments/agile-scrum-fails-to-get-to-grips-with-h
uman-psychology.html, 2006. Article (CrossRef Link)

[20] Mikko, S., Richard, B. and Tapio, k., “Integrating Security into Agile Development
Methods,” in Proc. of Proceedings of the 38th Hawaii International Conference on
System Sciences, 2005. Article (CrossRef Link)

[21] Anti, V, S., et al., “Secure software development and agile methods – notes,” at
http://confluence.agilefinland.com/display/af/Secure+software+development+and+agile
+methods+-+notes, 2010. Article (CrossRef Link)

[22] Adrian, L., “FireStarter: Agile Development and Security,” at
https://securosis.com/blog/agile-development-and-security, 2010. Article (CrossRef
Link)

[23] Zulkarnain Azham., Imran Ghani. and Norafida Ithnin., “Security Backlog in Scrum
Security Practicesm,” in Proc. of 5th Malaysian Software Engineering Conference, 2011.
Article (CrossRef Link)

[24] McGraw, G., “Software Security: Building Security In,” Addison-wesley software
security series, 2006. Article (CrossRef Link)

[25] Checkland, P., “Soft Systems Methodology in Action,” Toronto, Ontario, Canada: John
Wiley & Sons, 1990. Article (CrossRef Link)

[26] QFD Institute, “Frequently Asked Questions About QFD,” at
http://www.qfdi.org/what_is_qfd/faqs_about_qfd.html, 2005. Article (CrossRef Link)

[27] Christel, M. and Kang, K., “Issues in Requirements Elicitation,” Software Engineering
Institute, 1992. Article (CrossRef Link)

[28] Kunz, Werner. and Rittel, Horst., “Issues as Elements of Information Systems,” at
http://www.cc.gatech.edu/~ellendo/rittel/rittel-issues.pdf, 1970. Article (CrossRef Link)

[29] Wood, J. and Silver, D., “Joint Application Design: How to Design Quality Systems in
40% Less Time,” New York: John Wiley & Sons, 1989. Article (CrossRef Link)

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493611&tag=1
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4493611&tag=1
http://dx.doi.org/10.1016/j.infsof.2007.02.002
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fpublic.dhe.ibm.com%2Fcommon%2Fssi%2Fecm%2Fen%2Fraw14148usen%2FRAW14148USEN.PDF&ei=5HnvUvbDHYWtlAWV3oCQBw&usg=AFQjCNEqbldjwkGGaX71U81BOjH6h322Nw&cad=rjt
http://link.springer.com/book/10.1007%2Fb99820
http://link.springer.com/chapter/10.1007%2F978-3-642-13054-0_2
http://www.claretyconsulting.com/it/comments/agile-scrum-fails-to-get-to-grips-with-human-psychology/2006-08-17/
http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1385609&userType=inst
http://confluence.agilefinland.com/display/af/Secure+software+development+and+agile+methods+-+notes
https://securosis.com/blog/agile-development-and-security
https://securosis.com/blog/agile-development-and-security
http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=06140708
http://www.swsec.com/
http://www.qfdi.org/what_is_qfd/faqs_about_qfd.html
https://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=2&ved=0CDsQFjAB&url=https%3A%2F%2Fresources.sei.cmu.edu%2Fasset_files%2FTechnicalReport%2F1992_005_001_16478.pdf&ei=KYPvUqmVMoyClQWa9IHwBw&usg=AFQjCNE_JFuGtfOEfJCzUK0L8x_DHJ7_aA&bvm=bv.60444564,d.dGI
http://www.cc.gatech.edu/%7Eellendo/rittel/rittel-issues.pdf
http://dl.acm.org/citation.cfm?id=70556

662 Imran Ghani et al.: Integrating Software Security intoAgile-Scrum Method

[30] Schiffrin, D., “Approaches to Discourse,” Oxford, UK: Blackwell, 1994. Article
(CrossRef Link)

[31] Hubbard, R., Mead, N. and Schroeder, C., “An Assessment of the Relative Efficiency of a
Facilitator-Driven Requirements Collection Process with Respect to the Conventional
Interview Method,” in Proc. of 4th International Conference on Requirements
Engineering, pp.178-186, 2000. Article (CrossRef Link)

[32] Sullivan., “Security Development Lifecycle for Agile Development,” Mirosoft, at
http://www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/BlackHat-DC-2010-S
ullivan-SDL-Agile-wp.pdf, 2009. Article (CrossRef Link)

[33] Gencer, E., "Security Testing of Web Based Applications," Master Thesis Norwegian
University of Science and Technology Department of Computer and Information Science,
2009. Article (CrossRef Link)

[34] Sindre., G, and Opdahl. A., “Capturing security requirements through misuse cases,” in
Proc. of Proceedings of the 14th Norwegian informatics conference, 2001. Article
(CrossRef Link)

[35] Mullery., G, "CORE: A method for controlled requirements expression," in Proc. of
Proceedings of 4th International Conference on Software Engineering. (ICSE-4), pp.126
-135, 1979. Article (CrossRef Link)

[36] Kang, C., Cohen, G., Hess, A., Novak, E., and Peterson, A., “Feature-oriented domain
analysis (FODA) feasibility study,” Technical report CMU/SEI-90-TR-21, Software
Engineering Institute, Carnegie Mellon University, 1990. Article (CrossRef Link)

[37] Alnatheer, M., Nelson, K.: A proposed framework for understanding information security
culture and practices in the Saudi context. In: Proceedings of the 7th Australian
Information Security Management Conference, pp. 6–17. SECAU - Edith Cowan
University, Australia, Perth, Australia , 2009. Article (CrossRef Link)

[38] Vaha-Sipila, A., “Software security in agile product management,”
http://www.fokkusu.fi/agile-security/Software%20security%20in%20agile%20product
%20management.pdf (2011) accessed on May 2013. Article (CrossRef Link)

http://bookshop.blackwell.co.uk/jsp/id/Approaches_to_Discourse/9780631166238
http://bookshop.blackwell.co.uk/jsp/id/Approaches_to_Discourse/9780631166238
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=855608&tag=1
http://www.blackhat.com/presentations/bh-dc-10/Sullivan_Bryan/BlackHat-DC-2010-Sullivan-SDL-Agile-wp.pdf
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=http%3A%2F%2Fwww.diva-portal.org%2Fsmash%2Fget%2Fdiva2%3A348920%2FFULLTEXT01.pdf&ei=O4XvUpD6EYzckgW4poHQAw&usg=AFQjCNHuFyYxdL9sTHGJJKPWjkkuch19Zw&bvm=bv.60444564,d.dGI
http://www.nik.no/2001/21-sindre.pdf
http://www.nik.no/2001/21-sindre.pdf
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CC4QFjAA&url=http%3A%2F%2Fss.hnu.cn%2Foylb%2Ftsp%2FCORE-mullery.pdf&ei=mobvUsqAPY2FlAW3uYH4BA&usg=AFQjCNEz0IPFK9mW3K0QXDdgpLaLLVqolg&bvm=bv.60444564,d.dGI
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CDAQFjAA&url=http%3A%2F%2Fwww.sei.cmu.edu%2Freports%2F90tr021.pdf&ei=CYfvUv3jDMyHkQW7_4C4DQ&usg=AFQjCNEBRG4eWpDxio6XnfRQcl8QF9dRag&bvm=bv.60444564,d.dGI
http://www.google.co.kr/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0CCgQFjAA&url=http%3A%2F%2Figneous.scis.ecu.edu.au%2Fproceedings%2F2009%2Faism%2FAISMProceedings.pdf&ei=nYfvUu-QBtCgkgXH3IHYDw&usg=AFQjCNEgtmHXIEmlNZEvOzuArp34OjO1xg&bvm=bv.60444564,d.dGI
http://www.fokkusu.fi/agile-security/Software%20security%20in%20agile%20product%20management.pdf

KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014 663

Imran Ghani is a Senior Lecturer at Faculty of Computing, Universiti Teknologi
Malaysia (UTM), Johor Campus. He received his Master of Information Technology
Degree from UAAR (Pakistan), M.Sc. Computer Science from UTM (Malaysia) and
Ph.D. from Kookmin University (South Korea). His research focus includes agile
software development practices, semantics techniques, web services, software testing,
enterprise architecture and software architecture.

Zulkarnain Azham earned his Bachelor’s Degree in Software Engineering, Master’s
Degree in Computer Science (Information Security) from Universiti Teknologi Malaysia
(UTM), Johor Campus. Currently, he is doing Ph.D. in Computer Science at Universiti
Teknologi Malaysia (UTM). His research focus is on information security.

Seung Ryul Jeong is a Professor in the Graduate School of Business IT at Kookmin
University, Korea. He holds a B.A. in Economics from Sogang University, Korea, an
M.S. in MIS from University of Wisconsin, and a Ph.D. in MIS from the University of
South Carolina, U.S.A. Dr. Jeong has published extensively in the information systems
field, with over 60 publications in refereed journals like Journal of MIS,
Communications of the ACM, Information and Management, Journal of Systems and
Software, among others. Dr. Jeong’s areas of interest are Process Management, Software
Engineering, Systems Implementation, and Information Resource Management.

http://jmis.bentley.edu/toppage/
http://www.acm.org/cacm/
http://authors.elsevier.com/JournalDetail.html?PubID=505553&Precis=DESC
http://www1.elsevier.com/homepage/sae/orms/jom/menu.htm
http://www1.elsevier.com/homepage/sae/orms/jom/menu.htm

	Table 1. Security Principles

