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Abstract 
 

Wind energy has proven its viability by the emergence of countless wind turbines around the 
world which greatly contribute to the increased electrical generating capacity of wind farm 
operators. These infrastructures are usually deployed in not easily accessible areas; therefore, 
maintenance routines should be based on a well-guided decision so as to minimize cost. To aid 
operators prior to the maintenance process, a condition monitoring system should be able to 
accurately reflect the actual state of the wind turbine and its major components in order to 
execute specific preventive measures using as little resources as possible. In this paper, we 
propose a fault detection approach which combines cluster analysis and frequent pattern 
mining to accurately reflect the deteriorating condition of a wind turbine and to indicate the 
components that need attention. Using SCADA data, we extracted operational status patterns 
and developed a rule repository for monitoring wind turbine systems. Results show that the 
proposed scheme is able to detect the deteriorating condition of a wind turbine as well as to 
explicitly identify faulty components. 
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1. Introduction 

The large-scale wind energy industry is relatively new and is rapidly expanding. Today, wind 
energy is considered the fastest growing alternative source of electricity around the world. As 
a result, wind farms contribute a significant volume of electrical generating capacity as they 
consist hundreds of units built worldwide. Most Wind Turbines (WT) are three-blade units 
composed of a number of major components. Driven by the wind, the blades and rotor is able 
to pass energy to the generator, such that the generator speed is as close as possible to optimal 
generation of electricity. Therefore, the ability of a wind turbine to extract power from the 
wind is a function of three main factors: the measured wind speed, the power curve of the 
turbine, and the ability of the turbine to handle wind fluctuations [1]. Most subsystems in wind 
turbines may fail during operation, including rotors and blades, pitch control systems, 
gearboxes and bearings, yaw systems, generators, power electronics, electric controls and 
brakes among others. As wind turbines are located at remote locations that may be difficult to 
access, their maintenance becomes an issue. 
An efficient condition monitoring system for wind turbines is required to ensure operational 

reliability, high availability of energy production and at the same time reduce operating and 
maintenance costs [2]. As wind turbines improved their capacity, preventive maintenance has 
become more favorable. Preventive maintenance can be easily carried out by scheduled 
maintenance which involves the repair or replacement at regular time intervals as 
recommended by the supplier and regardless of condition. However, reducing failures in this 
manner comes at the cost of performing maintenance tasks more frequently than necessary and 
fully utilizing the functional lifetime of the various components. For that matter, an excellent 
alternative is to prevent major component failure and system breakdown with condition based 
maintenance (CBM) in which continuous monitoring and inspection techniques are employed 
to detect incipient faults early, and to determine any necessary maintenance tasks ahead of 
failure [3]. CBM has been shown to minimize the costs of maintenance, improve operational 
safety, and reduce the quantity and severity of in-service system failures. Currently, modern 
turbines come with some form of integrated system that can monitor the main componentsand 
keep track of various. Data regarding these parameters is collected and stored via a 
supervisory control and data acquisition (SCADA) system that usually archives the 
information for all of the turbines in the wind farm. The accumulated data could be beneficial 
if analyzed and interpreted automatically to assist operators in detecting and identifying WT 
faults. 

The fault effect is commonly observed in WT power curve in which the curve slightly 
deviates from its normal position prior to a maintenance period. However, the symptom is 
quite weak, generic and not always considered as a convincing proof of the fault. Because of 
this, it is imperative that even though the power curve is popularly used in WT SCADA 
systems, it still has its limitation in detecting component-level faults. In this paper, we aim to 
tackle the problem by uncovering more relevant information hidden in SCADA data. By 
combining cluster analysis and data mining, we assert that the faulty WT status patterns in 
SCADA data would be easily detected once the operational condition has been captured. Thus, 
any deviation of the actual value from its expected value would indicate a fault. Since the 
value of SCADA data is dependent on WT operational conditions, the strategy to properly 
classify status patterns as well as to evaluate the deviations under varying conditions is our 
main concern. 
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2. Related Work 

2.1 Condition Monitoring Systems 
To date, vibration analysis remains the most popular condition monitoring technology 
employed in WT especially for rotating equipment [4]. It is well-suited for monitoring the 
gearbox, bearings, and other selected WT elements. The measurement and interpretation of 
acoustic emission parameters for fault detection in ball bearings has been demonstrated at 
different speed ranges in [5]. Furthermore, its application for the detection of bearing failures 
has been presented in [6]. In a way, acoustic monitoring is similar with vibration monitoring 
only that vibration sensors are installed on the component involved to detect movement [7]. 
From a case study of a WT gearbox in [8], vibration may possibly not be evident while faults 
are developing, but analysis of the oil can provide early warnings. For lifetime forecasting and 
protection against high stress levels especially in the blades, stress measurement is another 
viable option. In [9], an assessment of strain gauge signal interpretation from strain gauge 
sensors installed on the blade has been performed in order to adjust calibration practices and 
sensor selection. Thermography is often used for monitoring electronic and electric 
components and identifying failure. The technique is only applied off-line, and often involves 
visual interpretation of hot spots that arise due to bad contact or a system fault. The work in [10] 
used infrared cameras to visualize variations in blade surface temperature and can effectively 
indicate cracks as well as places threatened by damage. 
 

2.2 Cluster Analysis in Wind Turbine Operation 
Clustering has been long proven to be useful in several exploratory pattern analysis, grouping, 
decision making, and machine learning applications. For WTs, an accurate monitoring of a 
turbine’s performance is instrumental for detecting a potentially deteriorating state. In [11], a 
performance monitoring system for wind turbines based on a hybrid neuro-fuzzy clustering is 
presented. By taking advantage of the combined strengths of neural networks and fuzzy 
inference systems, an accurate modeling of wind turbine performance is established. The work 
in [12] proposes a method to cluster wind turbines, which can be applied for modeling a 
large-scale wind farm in complex terrain or irregular layout. According to the real-time 
operating data, the wind turbines are divided into different groups by the method which is 
based on spectral clustering algorithm to capture the similarity of output characteristics of 
wind turbines. In [13] they presented an approach for fault detection using available 
SCADA-data from wind turbines. Systematic analysis of data indicated clear distinctions 
between fault and no-fault conditions in relationships among several parameters. These 
distinctions in relationships were exploited in the development of automated fault diagnostics 
algorithms. Principal component analysis and self-organizing feature maps were used in the 
algorithms. Fuzzy clustering method and similarity theory is used in [14] to classify different 
periods into different time category and then choose a fixed output value to represent the 
output of wind power in category respectively. The wind speed distribution function is used to 
describe the characteristics of classified wind speed data, and expected output of wind power 
is obtained via a typical wind turbine power curve. 

2.3 Data Mining in Wind Turbine CMS 
Data mining has been successfully utilized in several applications in manufacturing, 
marketing, medical informatics, and the energy industry. The previous efforts using data 
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Fig. 1.  Overall system design. 
 

mining in wind energy has primarily focused on estimating and optimizing the power output. 
Using data mining techniques for modeling WT performance, we can take advantage of the 
data provided by SCADA systems.  In [15], they presented a review of works focused on 
forecasting wind speed and generated power using both physical models and data mining 
methods. Moreover, models for long-term and short-term predictions of power with data 
mining techniques are discussed in [16]. In [17], four data-mining approaches for wind turbine 
power curve monitoring are compared. Power curve monitoring is applied to evaluate the 
turbine power output and detect deviations which cause financial loss. While in [18], they 
presented a generic approach to use appropriate techniques for forecasting based on data 
availability and its characteristics which can be exclusively used for very short term period 
with a 30 minutes time interval. In [19], a short-term prediction model with a maximum 
12-hour forecast length and a long-term prediction model with a maximum 84-hour forecast 
length were built using weather forecasting data as predictors. The boosting tree algorithm and 
PCA transformation were used to reduce the predictor data dimension and enhance prediction 
accuracy. 

3. Fault Detection Based on Cluster Analysis and Frequent Pattern 
Mining 

In this section, we discuss the design of our proposed WT fault detection strategy. As shown  
in Fig. 1, the fault detection scheme is composed of various procedures which include the 
acquisition and pre-processing of SCADA data, clustering and classification, itemset 
generation, frequent pattern mining, rule generation, and fault detection.  
 
 
 
 
 
 
 
 

3.1 Data Acquisition and Pre-processing 
The fault detection system presented in this work is applicable to wind turbines equipped with 
SCADA system. During the operation of a wind turbine, a normal behavior can be 
characterized by its power curve. An apparent advantage of using normal behavior models to 
monitor wind turbine signals is that no prior knowledge about the signal behavior is necessary. 
Thus normal behavior SCADA data were used in the initial stage of clustering and 
classification. 

However, it is known that even at a normal status, the power output of a wind turbine could 
sometimes be inconsistent with the reported wind speed. This is for the reason that the blade 
pitch angle also needs to be restrained so as to protect the turbine against extreme winds. This 
would obviously generate data which are actually deviant from the expected normal behavior. 
Hence, it is crucial that we first identify outliers and eliminate them from the data set so as to 
assure its integrity. Since data mining algorithms construct models using large datasets, it 
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requires data preprocessing that is time-consuming. Thus, a significant portion of the analysis 
time may be spent on data sampling, parameter selection, and other data analysis tasks. 

3.2 Cluster Analysis Using K-means 
Clustering has been long proven to be useful in several exploratory pattern analysis, grouping, 
decision making, and machine learning applications. In this work, K-means Clustering [20] is 
used to perform classification of SCADA data. The K-means clustering, being simple and 
generally fast makes it easy to handle large amounts of data, therefore widely used in signal 
processing. Briefly, the following procedures show the major steps of applying the K-means 
clustering algorithm to the clustering and classification of SCADA data: 
 

1) Specify the number of K clusters. 
2) Initialize the centroid for each K cluster. This is done by randomly dividing all objects into K 

clusters, deriving their centroids, and verifying that all centroids are different from each other. 
As an alternative, the centroids can be initialized to K randomly chosen objects. 

3) Iterate over all objects while computing their distances to the centroids of all clusters. Each 
object is then assigned to the cluster with the nearest centroid. 

4) Recalculate the centroids of both modified clusters. 
5) Repeat step 3 until the centroids do not change any more. 

 
Each SCADA log composed of various turbine operation parameters is assigned to the 

closest centroid. To do this, a distance function that quantifies the perception of closeness for 
the specific data under consideration is needed. The function used is the Euclidean Distance 
defined as: 

where x = (xi ,... xm) and y= (yi ,...ym) are two input vectors with m quantitative features. In the 
Euclidean distance function, all features contribute equally to the function value. The optimal 
clustering number K is then identified based on Davies & Bouldin rule [21]. The Davies & 
Bouldin factor is defined as: 

In which, di is the average distance in class i, dj is the average distance in class j , Dij is the 
distance between class i and class j . Clustering result is the best when DB reaches minimum. 
So, k is identified when DB reaches minimum in the range from 2 to 10. 

The raw SCADA data is complex and highly dimensional. Prior to subjecting the data set to 
cluster analysis, we need to select a number of suitable WT performance parameters. In this 
work, we used power, wind speed, pitch angle, and rotor speed. Because of their correlations, 
they would provide valuable hints for detecting WT faults. As a result of the clustering process, 
the entire data set is divided into K clusters. Each cluster covers a subset of the SCADA data 
composed of the readings for the four parameters. After all the WT operation logs have been 
assigned to the clusters, we can now generate the itemsets that classify parameter values based 
on their ranges. For example, if power output range is 626.2 to 648.65 power = "P1", if wind 
speed range is 10.1 to 11.4 wspeed = "W1", if pitch angle range is 1.92 to 3.57 pitch = "PA3", 

𝑑(𝑥,𝑦) = ��(𝑥𝑖 − 𝑦𝑖)2
𝑚

𝑖=1

 (1) 

𝐷𝐵 =  
1
𝑘
�𝑚𝑎𝑥 �

𝑑𝑖 + 𝑑𝑗
𝐷𝑖𝑗

�
𝑘

𝑖=1

 (2) 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 8, NO. 2, February 2014                                 669 

 

Item sets 1 

Item sets 2 

Item sets 5 

Item sets 3 

Item sets 4 

if rotor speed range is 1914 to 1927.5 rpm = "RPM1". As shown in Fig. 2, applying this to all 
the clusters we can derive the itemsets which are then used to represent parameter values 
which are treated as frequent patterns. 

 
 
 

 
 
 
 
 
 
 
 
 

Fig. 2.  Mapping of itemsets to clusters. 
 

3.3 Frequent Pattern Mining with FP-Growth Algorithm 
Frequent itemsets serve an important purpose in many data mining tasks aimed to find 
interesting patterns from databases. Originally, the idea of frequent itemset was intended for 
mining transaction databases. For example, there exists a set of all items I = {i1, i2, . . . , in}. A 
k-itemset α, composed of k items from set I, is considered frequent if α occurs in a transaction 
database D no lower than θ|D| times, where θ is a user-specified minimum support threshold, 
and |D| is the total number of transactions in D. The task of discovering all frequent itemsets is 
quite challenging. This is due the fact that the search space is exponential in the number of 
items occurring in the database. The support threshold is intended to reduce the output to a 
confidently reasonable subspace. Thus, in the case of SCADA systems, such databases are 
expectedly massive, containing records of wind turbine operation which would make 
determining support a difficult problem. 
The FP-Growth [22] algorithm mines the complete set of frequent itemsets without candidate 

generation by taking advantage of the divide-and-conquer strategy.  The initial scan of the 
database retrieves a list of frequent items in which items are ordered according to their number 
of occurrence in a descending order. Based from the list generated, the database is compressed 
into a frequent-pattern tree, or FP-tree, in which the itemset association information is kept. 
Starting from each frequent length-1 pattern, the FP-tree is mined by constructing its 
conditional pattern base which is a “subdatabase”, then constructing its conditional FP-tree, in 
which mining is performed recursively. Finally, the pattern growth is achieved by the 
concatenation of the suffix pattern with the frequent patterns generated from a conditional 
FP-tree. 

Applying the method, the first scan of the data set in Table 1 derives the set of frequent items 
and their support counts. With a minimum support threshold of 2, the set of frequent items is 
sorted according to support count in descending order. This resulting set or list is denoted as L 
= {{P1: 6}, {WS2: 4}, {PA3: 4}, {RPM3: 3}, {RPM4: 3}, {P2:2}, {WS3:2}, {WS4:2}, 
{PA4:2}, {PA5:2}, {RPM:2}}. Once the list of frequent items is ready, the FP-tree is then 
constructed. First, the root of the tree is created and labeled with “null”. The database D is then 
scanned for the second time. At this point, the items in each record are sorted according to 
descending support count and a branch is created for each record, whereas the items represent 
the nodes. For instance, the scan of the first record, “P1, WS2, PA5, RPM4” containing four 
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items will be represented as “P1, WS2, RPM4, PA5”. This is followed by the construction of 
the first branch of the tree with four nodes, <P1: 1>, <WS2:1>, <RPM4:1>, and <PA5: 1>, 
where <P1> is linked as a child of the root, <WS2> is linked to <P1>, <RPM4> is linked to 
<WS2> and <PA5> is linked to <RPM4>. Meanwhile, the second record “102: P2, WS4, PA3, 
RPM3” will be re-ordered as “PA3, RPM3, P2, WS4”. The item set would result in a new 
branch directly connected to the root node, since there is currently no node labeled as PA3. 
Going to the third record, the item set will be ordered as “PA3, RPM4, P2, WS3”. However, 
the resulting branch would share a common prefix PA3, with the existing branch generated 
from record 101. Thus, this branch will simply be linked to node PA3 and the count of node 
PA3 is incremented by 1.A new node <RPM4: 1> is then created, which is linked as a child of 
<PA3: 2>. Basically, whenever a branch is to be added for each record, the count of each node 
along a common prefix is incremented by 1, and nodes for the items following the prefix are 
created and linked accordingly. 
 

LogID Itemset 
101 P1, WS2, PA5, RPM4 
102 P2, WS4, PA3, RPM3 
103 P2, WS3, PA3, RPM4 
104 P1, WS2, PA4, RPM2 
105 P1, WS3, PA4, RPM2 
106 P1, WS4, PA5, RPM3 
107 P1, WS2, PA3, RPM3 
108 P1, WS2, PA3, RPM4 

 
Table 1. Data set representing SCADA data. 

 
To enable tree traversal, an item header table is built so that each item points to its 

occurrences in the tree via a chain of node-links. As shown in Fig. 3, the FP-Tree with the 
associated node-links is created after scanning all the records. With this approach, the problem 
of mining frequent patterns in SCADA databases is transformed to that of mining the FP-tree. 
After the FP-tree has been created, frequent itemsets can now be mined using the FP-Growth 
method. The extraction of itemsets is done in a bottom-up fashion, from the leaves towards the 
root. This is where the the header table is used to find the paths ending with X. For instance, it 
is shown in Fig. 4 that paths ending with PA5 are found by following the node links. 

Fig. 3.  The FP-Tree generated from the sample data set. 
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Fig 4. Conditional FP-Tree for node PA5. 

 
These paths, often called prefix paths are derived by retaining only paths ending with PA5. 

Starting with leaf node PA5 which satisfies a minimum support threshold of 2, it is considered 
a frequent itemset. Doing the same process from the leaves going upward, the conditional 
FP-Tree for suffix PA5 is then used to solve {PA5, RPM4, WS2, P1} and {PA5, WS4, RPM3, 
P1}. Same process is used with leaf nodes RPM2, RPM3, RPM4, WS4, and WS3. 
 

3.4 Generation of Rules from Frequent Patterns 
After all the itemsets which represent frequent patterns from turbine operation data have been 
found, we generate strong association rules from them. A rule is considered strong if it 
satisfies both minimum support and minimum confidence. Rule support and confidence are 
two measures of rule interestingness. They respectively reflect the usefulness and certainty of 
discovered rules. A rule’s confidence measure can be derived as: 

The conditional probability is expressed in terms of itemset support count, where 
support_count(A ∪ B) is the number of records containing the itemsets A ∪ B, and 
support_count(A) is the number of records containing the itemset A. Because the rules are 
generated from frequent itemsets, each one automatically satisfies minimum support. For 
example given the itemset {P1, WS2, PA3, RPM4}, the following are some rules that can be 
generated: P1 ⇒WS2 ˄  PA3 ˄  RPM4, RPM4 ˄  P1 ⇒WS2 ˄  PA3, WS2 ⇒ RPM4 ˄  P1 ˄  PA3, 
WS2 ⇒ PA3 ˄ RPM4 ˄ P1. In Table 2, sample rules are shown. 
 

Rule Description 

P1 ⇒WS2 ˄ PA3 ˄ RPM4 
A power output of P1 is associated to a wind speed, pitch 
angle, and rotor speed classified as WS2, PA3, and RPM4 
respectively. 

WS2 ⇒ PA3 ˄ RPM4 ˄ P1 
A wind speed of WS2 is associated to a pitch angle, rotor 
speed, and power output classified as PA3, RPM4, and P1 
respectively. 

P1 ˄ WS2 ⇒ PA3 ˄ RPM4  
A power output of P1 and wind speed of WS2 is associated 
to a pitch angle and rotor speed classified as PA3, RPM4 
respectively. 

 
Table 2. Sample rules generated from an itemset. 

𝑐𝑜𝑛𝑓𝑖𝑑𝑒𝑛𝑐𝑒(𝐴 ⇒ 𝐵) =  
𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴 ∪ 𝐵)
𝑠𝑢𝑝𝑝𝑜𝑟𝑡_𝑐𝑜𝑢𝑛𝑡(𝐴)

 (3) 
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Timestamp Power 
Output 

Wind 
Speed 

Pitch 
Angle 

Rotor 
Speed 

2011-07-07 
PM 2:30:00 P4 WS1 X RPM9 

2011-07-07 
PM 2:40:00 X WS4 X X 

2011-07-07 
PM 2:50:00 X WS3 PA1 RPM9 

2011-07-07 
PM 3:00:00 P6 WS3 X RPM4 

2011-07-07 
PM 3:10:00 P5 WS1 X RPM2 

2011-07-07 
PM 3:20:00 P1 WS2 PA1 RPM2 

2011-07-07 
PM 3:30:00 P6 WS4 PA2 X 

2011-07-07 
PM 3:40:00 P4 WS2 X X 

 
Table 3. Sample scenario of a faulty turbine. 

 
Once the rules have been established, the idea of detecting wind turbine fault is 

straightforward. Each time a turbine status pattern is generated it is compared against the 
existing rules, thus a deviating pattern is an indicator of the wind turbine’s deteriorating 
condition. Moreover, we can further pinpoint specific faults by looking at the parameter which 
has the most deviations. A sample scenario shown in Table 3 indicates that the turbine is 
suffering from blade pitch angle error as it shows that most of the deviating patterns are 
concentrated on the pitch angle parameter. 

4. Implementation and Evaluation 

4.1 Implementation 
As discussed in the previous section, it is important that data should first undergo a 
pre-processing phase in order to remove the outliers which could affect the integrity of the 
derived model. Using K-means, 10 months of SCADA is processed and after a number of 
trials it was decided that 5 is the best value for the K number of clusters. For each cluster, a 
centroid value is calculated which represents the center of the cluster.  

After all status data had been assigned to their respective clusters, the itemsets that will 
represent the respective values of the selected WT parameters were generated, and from which 
rules will be made. However, it should be noted that not all rules that can be possibly mined 
from the main data set are interesting; many of them are very rare or almost does not occur 
which makes them not good candidate rules. Nevertheless, many interesting rules can be 
found using low support thresholds. Thus to generate a reasonable number of rules that could 
cover a vast range of WT parameter values we utilized a support threshold of 5% and a 
confidence of 90%. Through this, we were able to discard a huge number of uninteresting and 
non-occurring patterns. In Table 4 it shows that each cluster has a corresponding number of 
rule items for each parameter, the number of possible rules, and the number of interesting rules 
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that were extracted from them. 
 

Cluster 
Number of Rule Items Total 

no. of 
Rules 

Rules 
Extracted Power 

Output 
Wind 
Speed 

Pitch 
Angle 

Rotor 
Speed 

1 10 2 2 10 400 128 
2 10 2 3 10 600 95 
3 10 3 3 10 900 121 
4 10 2 2 8 320 87 
5 10 6 10 2 1200 60 

 
Table 4. Actual number of rules extracted from the total number of rules. 

 
Finally, using the extracted rules, an FP-Tree was created as shown in Fig 5. The plausible 

rules are then stored to the rule repository which will be used for the analysis of SCADA data. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 5. The FP-Tree for the proposed scheme. 

4.2 Evaluation 
To evaluate the proposed scheme, another batch of SCADA data is used. Whenever a set of 
wind turbine parameters is captured, a corresponding status pattern is generated. It is then 
compared against the rules in the repository whereas the deviating patterns indicate the 
deteriorating condition of the wind turbine. Basically, the accumulating deviation of status 
patterns from the observed normal behavior is just a general indicator of a turbine’s condition. 
Looking further into individual parameters, they can be used to identify faults at the 
component level through the number of deviations they exhibit. In this case, the miscorrelating 
patterns can be attributed to faults originating from the generator power, the pitch angle of 
blades, and the rotor speed. 

As shown in Fig. 6, the status patterns of a normal SCADA were logged using the 
proposed approach. As can be seen, a number of fault patterns were detected; at less than 5% 
of the entire data set, it is still far from the alarming level. Next we fed another set of SCADA 
data into the system, this time faulty ones. In Fig. 7a to Fig. 7c, it can be seen that the proposed 
approach is able to indicate the respective fault levels of the three wind turbine components. 
The faulty status pattern logs are shown in its first week of manifestation where the figure 
indicates a looming fault within the turbine components. Within one month, it can be noticed 
that the level of fault as indicated by the pattern logs, have doubled. After two months of 
logging the status patterns, the fault levels have greatly increased to an alarming level. 
Through time, as the faults worsen, the number of fault patterns increases which indicates the 
deteriorating condition of the wind turbine as it comes close to a maintenance period. The 
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figure shows that most of the deviating patterns were caused by the power output and rotor 
speed parameters, while that of the pitch angle is not as serious. Using this information, the 
maintenance and repair of the turbines can be focused on the exact faulty components thus 
saving significant cost, time, and effort. 

 

 
 

Fig. 6.  Status pattern log of normal SCADA data. 
 
 

 
 

Fig. 7a.  Status pattern log of faulty SCADA data at 1 week. 
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Fig. 7b.  Status pattern log of faulty SCADA data at 1 month. 
 
 

 
 

Fig. 7c.  Status pattern log of faulty SCADA data at 2 months. 
 

5. Conclusion 
In this paper, an approach for wind turbine fault detection is presented. Aside from monitoring 
the condition of the wind turbine in general, the proposed scheme is also able to identify 
specific faults at the component level. By synergistically incorporating cluster analysis and 
data mining, we put forward a simple yet efficient method to keep track of a wind turbine’s 
operating condition and its primary components. Initially, the system is modeled using 
considerable amount of operational SCADA data from which various ranges of parameter 
values were classified and represented as itemsets. This stage was carried out by the use of 
K-means Clustering which is a fast and simple technique well-suited for large data sets. After 
all data samples were assigned to a cluster, the next stage involved the use of the FP-Tree 
approach to extract frequent itemsets that represent regularly-occurring status patterns of a 
wind turbine. Finally, using the FP-growth technique, interesting rules were derived from the 
itemsets which were stored in the rule repository to be used as benchmark for incoming status 
readings from SCADA data. Evaluation results show that the proposed approach is able to 
keep track of a wind turbine’s overall condition as well as to pinpoint specific faulty 
components. By testing the proposed scheme using normal and faulty SCADA data, our work 
is able to accurately determine whether a wind turbine is in pristine or deteriorating condition. 
Moreover, we can easily determine which component has the most serious fault level. By 
enabling wind turbine operators to explicitly identify faults, significant savings in terms of 
cost, time, and effort are gained by performing timely and well-advised troubleshooting and 
maintenance routines. 
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