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ABSTRACT

Electrophysiological recordings are considered a reliable method of assessing a person’s alertness.

Sleep medicine is asked to offer objective methods to measure daytime alertness, tiredness and sleepiness.

As EEG signals are non-stationary, the conventional method of frequency analysis is not highly success-

ful in recognition of alertness level. In this paper, EEG signals have been analyzed using wavelet trans-

form as well as discrete wavelet transform and classification using statistical classifiers such as euclidean

and mahalanobis distance classifiers and a promising method SVM (Support Vector Machine). As a result

of simulation, the average values of accuracies for the Linear Discriminant Analysis (LDA)-Quadratic,

k-Nearest Neighbors (k-NN)-Euclidean, and Linear SVM were 48%, 34.2%, and 86%, respectively.

The experimental results show that SVM classification method offer the better performance for reliable

classification of the EEG signal in comparison with the other classification methods.
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1. INTRODUCTION

One of the important applications of electro-

encephalogram (EEG) processing is the study of

the time course of alertness and vigilance of oper-

ators who perform monotonous but attention de-

manding tasks (air traffic controllers, lorry drivers,

etc.) [1-5]. The objective is to avoid potential acci-

dents generated by decreased vigilance using a re-

al-time system which can continuously monitor

vigilance, thereby preventing accidents caused by

attention deficit. So, EEG signals give important

information about the vigilance states of any

subject. But conventional method of classification

of EEG signals using mutually exclusive time and

frequency domain representations does not give

efficient results.

Therefore, the aim of this study was to establish

a method for processing input data from a set of

statistical features, which was extracted from dis-

crete wavelet transform (DWT) sub-bands of EEG

recordings, by the use of support vector machine

(SVM) that distinguishes between alert, drowsy

and sleep states in arbitrary subjects. EEG dis-

tinguishes between states of vigilance, that is,

wakefulness and sleep, and to some extent between

the ‘levels’ of vigilance within a state. The EEG

frequency spectrum is subdivided into (1–4),

(4–8), (8–13), (13–30) and (>30)

frequency ranges. During wakefulness,  and 

frequencies in the awake state EEG are of partic-

ular interest for research on sleepiness[6].

During active wakefulness (with eyes open), 

power is usually low unless the subject is severely

fatigued. However, in resting conditions (with eyes

closed),  power is also high when the subject is

fully rested. During the transition from resting

conditions, with eyes closed, to sleeping a gradual
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reduction of  power and a gradual increase in q

power occurs. Reduced a power and increased 

power during resting awake periods, with eyes

closed, may thus indicate a high motivation for

sleeping. Indeed, it was found that subjective

sleepiness during awake periods correlates neg-

atively with  power and positively with  power

in the awake EEG during prolonged wakefulness.

Spontaneous electrical brain activities, that are

EEG signals, are dynamic, stochastic, non-linear

and non-stationary [7-9]. The EEG recordings de-

pend on the location of the electrodes, their im-

pedance and the state of alertness.

In addition, the EEG recordings vary sub-

stantially between healthy subjects.

Recently, some studies [10,11] concentrated on

detecting the information on drowsiness available

from a full EEG spectrum.

[12] used power spectrum analysis of EEG sig-

nals for estimating visual attention.

[13] worked on developing an automatic proce-

dure for arousal detection during sleep.

They tested this on a group of subjects, in dif-

ferent pathological conditions by using wavelet

transform.

In numerical analysis and functional analysis, a

discrete wavelet transform (DWT) is any wavelet

transform for which the wavelets are discretely

sampled.

As compared to the conventional method of fre-

quency analysis using Fourier transform or short

time Fourier transform, wavelets enable analysis

with a course to fine multi-resolution perspective

of the signal[14]. In this work, discrete wavelet

transform (DWT) has been applied for the time–

frequency analysis of EEG signals and SVM for

the classification using wavelet coefficients. EEG

signals were decomposed into frequency sub-

bands using discrete wavelet transform (DWT).

Then a set of statistical features was extracted

from the sub-bands to represent the distribution

of wavelet coefficients.

2. MATERIALS

2.1 Subjects

In this study, EEG signals were obtained from

20 subjects. The group consisted of 9 females and

11 males with ages ranging from 18 to 65 years

and a mean age of 40 years, and a Body Mass Index

(BMI) of about 35 . Subjects with normal in-

telligence and without mental disorders were in-

cluded in this study after passing the neurological

screening. All recordings were performed in ac-

cordance with medically ethical standards.

2.2 Sleep EEG and Specifications of Stages

Sleep is a state that does not react to the sur-

rounding environment and reduces feeling. Also,

sleep is divided into several sleep stage according

to EEG signals (see Fig. 2).

Here, let's take a closer look at the four stages

of sleep:

•Stage W(Wake) :

It is the stage of alertness through falling into

sleep. In this section there may a more clear dis-

tinctiveness and little amount of slowness in alpha

rhythms. Beta rhythms may be observed and this

may continue through the stage 1 of sleep.

Especially, this stage of sleep is seen more when

the sleep is provided under condition of sedative

effects. Stage 1 sleep is light sleep where you drift

in and out of sleep and can be awakened easily.

In this stage, the eyes move slowly and muscle ac-

tivity slows. During this stage, many people expe-

rience sudden muscle contractions preceded by a

sensation of falling.

•Stage 1:

This stage takes start with attenuating alpha

rhythms and revealing 2-7 slow waves. In early

periods of this stage, many peoples’ EEGs have low

amplitude and mixed frequency activities. However,

mid-amplitude slow wave drains right after at-

tenuation of alpha rhythms might be encountered
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(a)

(b)

Fig. 1. The international 10-20 system seen from

(a) left and (b) above the head.

on some subjects. Alpha rhythms might be re-

peated in short time intervals. This is the instant

when light stimulus paradoxical alpha rhythms are

visualized. Muscle activity gets slower and slow

eye movements may occur and last a few seconds.

•Stage 3:

It can be distinguished by high amplitude and

slow waves. 20-50% of the whole sleep recording

period is occupied by the waves which are 2 and

have amplitude above 75 microvolts. K-complexes

may happen and sleep needles may not. When a

person enters stage 3, extremely slow brain waves

called delta waves are interspersed with smaller,

faster waves.

•Stage R(REM):

This stage can be distinguished by low voltage

EEG patterns, rapid eye movements and generally

attenuated muscle movements. Dreams are seen in

this stage of the sleep. Even though some visual

and behavioral patterns of EEG make the experts

consider that this stage is a light sleep stage, in-

crease of the auditory stimulants awakening

threshold value shows that sleep is deepening in

this stage. Therefore this stage is a deep sleep

period. In the REM period, breathing becomes more

rapid, irregular and shallow, eyes jerk rapidly and

limb muscles are temporarily paralyzed. Brain

waves during this stage increase to levels experi-

enced when a person is awake. Also, heart rate in-

creases, blood pressure rises, males develop erec-

tions and the body loses some of the ability to reg-

ulate its temperature. This is the time when most

dreams occur, and, if awoken during REM sleep,

a person can remember the dreams. Most people

experience three to five intervals of REM sleep

each night.

2.3 EEG data acquisition and representation

Silver-plated electrodes were used for the re-

cordings, and a C3–A2 standard settlement was

applied to the subject of the experiment, according

to the 10–20 international electrode placement

system (see Fig. 1).

The EEG data used in this study was taken from

GRASS MODEL-78 EEG & POLYGRAPH data

recording system. The recordings were band pass

filtered between 0.3 and 50. The EEG recordings

were digitalized with 12-bit resolution, at a sam-

pling rate of 128 per channel. Eight channels of

the instrument can be used at the same time. Each

channel can be gained distinctly and has at most

1000 sampling rate. Each record was scored by

two experts for alertness level staging, with a link

to the recording. The system provides real-time

data processing. Different EEG epochs have been

given in Fig. 2. The signals were recorded during

the 6∼8-hour episodes. Then these EEG record-

ings were divided into 5-second epochs and 75%

overlapped, and these epochs are divided into four

frequency sub-bands , ,  and  by using dis-
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(a) Stage W (b) Stage 1

(c) Stage 3 (d) Stage R

Fig. 2. Different EEG signals.

crete wavelet transform (DWT).

3. METHODS

3.1 Analysis using discrete wavelet transform

Signal processing techniques are part and parcel

of EEG analysis. The sleep EEG signal is non-sta-

tionarity and wavelet analysis is very useful for

analysis of non-stationary signals. Specially,

wavelet transform has a good time-analysis ability

for high frequency component, and has a good fre-

quency-analysis ability for low frequency compo-

nent. Discrete wavelet transform (DWT) is a effi-

cient tool applied not only to the field of such signal

processing as noise elimination and image com-

pression but also in the analysis of disturbances

in waveforms owing to its capability to detect

discontinuities.

In this section, we used the technique of discrete

wavelet transform (DWT) to characterize the vari-

ous sleep stages associated with human sleep.

3.1.1 Wavelet transform

The wavelet transform specifically permits to

discrimination of non-stationary signals with dif-

ferent frequency features [15]. A signal is sta-

tionary if it does not change much over time.

Fourier transform can be applied to the stationary

signals. However, like EEG, plenty of signals may

contain non-stationary or transitory character-

istics. Thus it is not ideal to directly apply Fourier

transform to such signals. The wavelet transform

decomposes a signal into a set of basic functions

called wavelets. These basic functions are obtained
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by dilations, contractions and shifts of a unique

function called wavelet prototype. Continuous

wavelets are functions generated from one single

function  by dilations and translations [16-19].

    (1)

Where  is real valued and called the shift

parameter. The function set () is called a

wavelet family. Since the parameters   are con-

tinuous valued, the transform is called continuous

wavelet transform. The definition of classical

wavelets as dilates of one function means that high

frequency wavelets correspond to  or narrow

width, while low frequency wavelets have  or

wider width. In the wavelet transform,  is ex-

pressed as linear combination of scaling and wave-

let functions. Both scaling functions and the wave-

let functions are complete sets [16]. However, it is

common to employ both wavelet and scaling func-

tions in the transform representation. In general,

the scale and shift parameters of the discrete

wavelet family are given by

  
 ,   



where  and  are integers. The function family

with discretized parameters becomes

   
 

   (2)


 is called the discrete wavelet transform

(DWT) basis. Although it is called DWT, the time

variable of the transform is still continuous. The

discrete wavelet transform (DWT) coefficients of

a continuous time function are similarly defined as

    





 



  

(3)

When the Discrete Wavelet Transform(DWT)

set (
) is complete, the wavelet representation

of a function   is expressed as

  




      (4)

In general, a function can be completely repre-

sented by using L-finite resolutions of wavelet,

and the scaling function with parameters value of

  and   as

   
 ∞

∞

 ∅ 

 
  




  ∞

∞


 

(5)

where scaling coefficients  are similarly de-

fined as

  ∅  

 
∅




(6)

and

∅  ∅ 

 


 ∅

∅


 ∅

3.1.2 Sub-band decomposition of discrete wavelet

transform (DWT)

The Discrete Wavelet Transform (DWT), which

is based on sub-band coding, is found to yield a

fast computation of wavelet transform. It is easy

to implement and reduces the computation time and

resources required. The Discrete Wavelet Trans-

form (DWT) of a sequence x[n] is calculated by

passing it through a series of half band high pass

and low pass filters. Fig. 3 shows Sub-band de-

composition of discrete wavelet transform (DWT)

implementation. The low pass filter is denoted by

g[n] while the high pass filter is denoted by h[n].

Selection of suitable wavelet and the number of

levels of decomposition is very important in analy-

sis of signals using discrete wavelet transform

(DWT). The typical way is to visually inspect the

data first, and if the data are kind of discontinuous,

Haar or other sharp wavelet functions are applied;

otherwise a smoother wavelet can be employed.

Usually, tests are performed with different types

of wavelets and the one which gives maximum ef-
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Fig. 3. Sub-band decomposition of DWT implementation;  is the high-pass filter,  is the low-pass filter.

Table. 1. Frequencies corresponding to different

levels of decomposition for Daubechies

order 2 wavelet with a sampling fre-

quency of 128 .

Decomposed signal Frequency range ()

D1 32-64

D2 16-32

D3 8-16

D4 4-8

A4 0–4

ficiency is selected for the particular application.

The number of levels of decomposition is chosen

based on the dominant frequency components of

the signal. The levels are chosen such that those

parts of the signal that correlate well with the fre-

quencies required for classification of the signal are

retained in the wavelet coefficients. Since the EEG

signals do not have any useful frequency compo-

nents above 30, the number of levels was chosen

to be 4. Thus the signal is decomposed into the

details D1–D4 and one final approximation, A4.

The ranges of various frequency bands are shown

in Table 1. Daubechies order 2 wavelet transform

was applied to the stage1, stage3, stage R and

stage W signals. Fig. 4 shows four different levels

of approximation (identified by A1–A4 and dis-

played in the left column) and details (identified by

D1– D4 and displayed in the right column) of an

EEG signal.

These approximation and detail records are re-

constructed from the wavelet coefficients. Approx-

imation A3 is obtained by superimposing details D4

on approximation A4. Approximation A2 is ob-

tained by superimposing details D3 on approx-

imation A3. Finally, the original signal is obtained

by superimposing details D1 on approximation A1.

Wavelet transform acts like a mathematical micro-

scope, zooming into small scales to reveal com-

pactly spaced events in time and zooming out into

large scales to exhibit the global waveform pat-

terns [20].

4. CLASSIFICATION ALGORITHMS

After selecting the most discriminatory features,

we apply Linear Discriminant Analysis (LDA),

k-Nearest Neighbors (k-NN), and Support Vector

Machine (SVM) to obtain accuracy on our testing

samples. The classification results of these algo-

rithms can be used to compare the effectiveness

of various feature selection methods.

•LDA uses the distance between cluster cen-

ters and data to assign data to the accurate group.

The types of discriminant function: linear, quad-

ratic, and mahalanobis.

•k-NN is a typical instance-based prediction

model. By k-NN, the class label of a new testing

sample is decided by the majority class of its k

closest neighbors based on their Euclidean distance.

The types of discriminant function: euclidean, cor-

relation, and cosine.

•SVM is a kind of blend of linear modeling and

instance-based learning. A SVM selects a small

number of critical boundary samples from each

class and builds a linear discriminant function that

separates them as widely as possible. In the case
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(a) stage1 (b) stage3

(c) stage R (d) stage W

Fig. 4. Daubechies order 2 wavelet transform of stage EEG signal, respectively.

that no linear separation is possible, the technique

of "kernel" will be used to automatically inject the

training samples into a higher-dimensional space,

and to learn a separator in that space. The types

of discriminant function: linear SVM, Radial basis

function(RBF), and polynomial.

5. RESULTS

EEG signals were obtained from 20 subjects.

The group consisted of 9 females and 11 males

with ages ranging from 18 to 65 years and a mean

age of 40 years, and a Body Mass Index (BMI) of

about 35 . Performances of classifiers were

tested using the data recorded in 10 healthy

subjects. EEG signals of the Other 10 subjects

were used to train the classifiers we utilized when

realising the project. In this work, discrete wavelet

transform (DWT) has been applied for the time–

frequency analysis of EEG signals and SVM for
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Table. 2. Results for LDA-Linear Classifier

LDA-Linear

True False Accuracy

Stage 1 432 6768 6%

Stage 3 4320 2880 60%

Stage R 2952 4248 41%

Stage W 4896 2304 68%

Table. 3. Results for LDA-Quadratic Classifier

LDA-Quadratic

True False Accuracy

Stage 1 144 7056 2%

Stage 3 5904 1296 82%

Stage R 3960 3240 55%

Stage W 3816 3384 53%

Table. 4. Results for LDA-Mahalanobis Classifier

LDA-Mahalanobis

True False Accuracy

Stage 1 1512 5688 21%

Stage 3 3024 4176 42%

Stage R 1080 6120 15%

Stage W 5256 1944 73%

Table. 5. Results for k-NN-Euclidean Classifier

k-NN-Euclidean

True False Accuracy

Stage 1 1800 5400 25%

Stage 3 2376 4824 33%

Stage R 2376 4824 33%

Stage W 3312 3888 46%

Table. 6. Results for k-NN-Correlation Classifier

k-NN-Correlation

True False Accuracy

Stage 1 1512 5688 21%

Stage 3 2232 4968 31%

Stage R 2448 4752 34%

Stage W 2160 5040 30%

the classification using wavelet coefficients. EEG

signals were decomposed into frequency sub-

bands using discrete wavelet transform (DWT).

Then a set of statistical features was extracted

from the sub-bands to represent the distribution

of wavelet coefficients.

We applied Linear Discriminant Analysis (LDA),

k-Nearest Neighbors (k-NN), and Support Vector

Machine (SVM) to obtain accuracy on our testing

samples. Here, totally 7200 feature vectors are gone

through a classification process. Tables 2∼10

shows result of LDA, k-NN, and SVM, re-

spectively. Each table is organized is as follows:

in each row the is represented by an specific sleep

stage, each column represents the results of the

classification.

5.1 LDA Classifiers

For Table 2, the highest accuracy is 68% and

the lowest is 6%. The average accuracy rate of

LDA-Linear classifier was about 43.7%.

For Table 3, the highest accuracy is 82% and

the lowest is 2%. The average accuracy rate of

LDA-Quadratic classifier was about 48%.

For Table 4, the highest accuracy is 73% and

the lowest is 15%. The average accuracy rate of

LDA-Mahalanobis classifier was about 37.7%.

5.2 k-NN Classifiers

For Table 5, the highest accuracy is 46% and

the lowest is 25%. The average accuracy rate of

k-NN-Euclidean classifier was about 29.5%.

For Table 6, the highest accuracy is 34% and

the lowest is 21%. The average accuracy rate of

k-NN-Correlation classifier was about 29%.

For Table 7, the highest accuracy is 34% and

the lowest is 22%. The average accuracy rate of

k-NN-Cosine classifier was about 29.5%.

5.3 SVM Classifiers

For Table 8, the highest accuracy is 96% and

the lowest is 73%. The average accuracy rate of

Linear SVM classifier was about 86%.
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Table. 7. Results for k-NN-Cosine Classifier

k-NN-Cosine

True False Accuracy

Stage 1 1584 5616 22%

Stage 3 2160 5040 30%

Stage R 2448 4752 34%

Stage W 2304 4896 32%

Table. 8. Results for Linear SVM Classifier

Linear SVM

True False Accuracy

Stage 1 6696 504 93%

Stage 3 5904 1296 82%

Stage R 5256 1944 73%

Stage W 6912 288 96%

Table. 9. Results for RBF Classifier

RBF(Radial basis function)

True False Accuracy

Stage 1 5976 1224 83%

Stage 3 1080 6120 15%

Stage R 6984 216 97%

Stage W 2088 5112 29%

Table. 10. Results for Polynomial Classifier

Polynomial

True False Accuracy

Stage 1 7200 0 100%

Stage 3 3384 3816 47%

Stage R 2952 4248 41%

Stage W 7128 72 99%

For Table 9, the highest accuracy is 97% and

the lowest is 15%. The average accuracy rate of

RBF classifier was about 56%.

For Table 10, the highest accuracy is 100% and

the lowest is 41%. The average accuracy rate of

Polynomial classifier was about 71.5%.

In the case of low accuracy, we can think that

mixed up with other sleep stage. For example,

classification accuracy for Stage 1 of Table 3 is

only 2%( Stage 1 gets mixed up with Stage R and

Stage W). As a result of simulation, the average

values of accuracies for the Linear Discriminant

Analysis (LDA)-Quadratic, k-Nearest Neighbors

(k-NN)-Euclidean, and Linear SVM were 48%,

34.2%, and 86%, respectively. The experimental

results show that SVM classification method offer

the better performance for reliable classification of

the EEG signal in comparison with the other clas-

sification methods.

6. CONCLUSION

A lot of information about brain functions are

hidden in EEG signals. EEG signals give important

information about the vigilance states of any

subject. Specially, One of the important applica-

tions of electroencephalogram (EEG) processing is

the study of the time course of alertness and vigi-

lance of operators who perform monotonous but

attention demanding tasks (air traffic controllers,

lorry drivers, etc.). But, Conventional method of

classification of EEG signals using mutually ex-

clusive time and frequency domain representations

does not give efficient results. In this work, method

of sleep stage classification of EEG signals is

proposed. We was investigating sleep stage in-

formations of a human EEG by using Wavelet

Transformation method for the extraction one of

the very important features. In this study, EEG

signals were obtained from 20 subjects. The group

consisted of 9 females and 11 males with ages

ranging from 18 to 65 years and a mean age of

40 years, and a Body Mass Index (BMI) of about

35. Subjects with normal intelligence and without

mental disorders were included in this study after

passing the neurological screening.

The number of levels of decomposition is chosen

based on the dominant frequency components of

the signal. The levels are chosen such that those

parts of the signal that correlate well with the fre-

quencies required for classification of the signal are

retained in the wavelet coefficients. Since the EEG
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signals do not have any useful frequency compo-

nents above 30 Hz, the number of levels was chos-

en to be 4. EEG signals were decomposed into the

frequency sub-bands using wavelet transform in

order to find entropy of a EEG signal segment by

wavelet coefficients and a set of statistical

features. Then these statistical features were used

as an input to above mentioned classifiers with

four discrete outputs: stage 1, stage 3 stage REM

and stage AWAKE.

Features go through a selection so as to find the

best approach to purpose of the project. For

Classification, We used total 7200 feature vectors.

As a result of simulation, the average values of

accuracies for the Linear Discriminant Analysis

(LDA)-Quadratic, k-Nearest Neighbors (k-NN)-

Euclidean, and Linear SVM were 48%, 34.2%, and

86%, respectively. Thus, the experimental results

show that Support Vector Machine (SVM) classi-

fication method offer the better performance for re-

liable classification of the EEG signal in compar-

ison with the other classification methods. The ac-

curacy of this study is likely to be raised with the

improvement of the biomedical signal acquisition

tools, with the development of digital filters and

of course with the development of more accurate

signal processing algorithms. Finally, it can be

concluded that method of sleep stage classification

of this study will be useful for the neurologists to

analyze awake-sleep correlations.
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