DOI QR코드

DOI QR Code

Fabrication and Characterization of PCL/TiO2 Nanoparticle 3D Scaffold

PCL/TiO2 Nanoparticle 3차원 지지체 제조 및 특성 평가

  • Kim, Jung-Ho (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Lee, Ok Joo (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Sheikh, Faheem A. (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Ju, Hyung Woo (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Moon, Bo Mi (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Park, Hyun Jung (Nano-Bio Regenerative Medical Institute, Hallym University) ;
  • Park, Chan Hum (Nano-Bio Regenerative Medical Institute, Hallym University)
  • 김정호 (한림대학교 나노바이오재생의학 연구소) ;
  • 이옥주 (한림대학교 나노바이오재생의학 연구소) ;
  • ;
  • 주형우 (한림대학교 나노바이오재생의학 연구소) ;
  • 문보미 (한림대학교 나노바이오재생의학 연구소) ;
  • 박현정 (한림대학교 나노바이오재생의학 연구소) ;
  • 박찬흠 (한림대학교 나노바이오재생의학 연구소)
  • Received : 2013.09.10
  • Accepted : 2013.11.06
  • Published : 2014.03.25

Abstract

Polycaprolactone (PCL) is a synthetic biodegradable polymer with excellent mechanical properties. $TiO_2$ (titanium dioxide) has a hydrophilic, high density and excellent biocompatibility. In this work, we produced three-dimensional porous scaffolds with PCL and $TiO_2$ nanoparticles using a salt-leaching method. Physical properties of the scaffolds were analyzed by FE-SEM, FTIR, TGA and compressive strength. Interestingly, the addition of $TiO_2$ nanoparticles decreased the water absorption and swelling ratio of the porous scaffolds. However, the compressive strength was increased by $TiO_2$. CCK-8 assay, which is generally used for the analysis of cell growth, shows that $TiO_2$ nanoparticles have no cytotoxicity. Taken together, we suggest that the PLC/$TiO_2$-scaffold can be used for biomedical applications.

Polycaprolactone(PCL)은 생분해성 고분자로 인장강도, 신장률, 충격강도 등의 기계적 물성이 우수하다. $TiO_2$ (titanium dioxide) nanoparticle은 친수성으로 밀도가 높고 생체적합성이 우수하다. 본 연구에서는 PCL과 $TiO_2$(titanium dioxide) nanoparticle을 이용하여 salt-leaching방법으로 3차원 다공성 지지체를 제작하였다. 제작한 지지체를 FESEM, FTIR, TGA, 압축강도 측정 등을 통해 물성을 분석하였다. $TiO_2$ nanoparticle에 의해 물흡수도와 팽윤도는 감소하였으나 압축강도는 증가하였다. CCK-8 assay를 통해 세포의 증식률을 확인한 결과, $TiO_2$ nanoparticle에 의한 세포 독성은 없는 것으로 확인되었다. 이러한 연구결과는 PCL/$TiO_2$ nanoparticle 지지체의 생체재료로 사용가능성을 제시하였다.

Keywords

Acknowledgement

Supported by : 농촌진흥청

References

  1. B. P. Chan and K. W. Leong, Eur. Spine. J., 17, S467 (2008). https://doi.org/10.1007/s00586-008-0745-3
  2. T. G. Kim, H. Shin, and D. W. Lim, Adv. Funct. Mater., 22, 2446 (2012). https://doi.org/10.1002/adfm.201103083
  3. E. Sachlos and J. T. Czernuszka, Eur. Cell Mater., 12, 29 (2003).
  4. K. A. Blackwood, N. Bock, T. R. Dargaville and M. A. Woodruff, Int. J. Polym. Sci., 25, 1 (2012).
  5. S. Sahoo, L. T. Ang, J. C. H. Goh, and S. L. Toh, J. Biomed. Mater. Res. Part A, 12, 1539 (2009).
  6. J. Leor, Y. Amsalem, and S. Cohen, Pharmacol. Therapeut., 13, 151 (2005).
  7. S. C. Owen and M. S. Shoichet, Wiley Intersci., 11, 1321 (2010)
  8. B. Dhandayuthapani, Y. Yoshida, T. Maekawa, and D. S. Kumar, Int. J. Polym. Sci., 19, 1 (2011).
  9. S. H. Kim, S. H. Kim, and Y. H. Kim, Polymer Sci. Tech., 16, 468 (2005).
  10. G. Kumar, J. F. Bristow, P. J. Smith, and G. F. Payne, Polymer, 12, 2157 (2000).
  11. S. A. Sell, P. S. Wolfe, K. Garg, J. M. McCool, I. A. Rodriguez, and G. L. Bowlin, Polymers, 2, 522 (2010). https://doi.org/10.3390/polym2040522
  12. A. L. Egana and T. Scheibel, Biotechnol. Appl. Biochem., 13, 155 (2010).
  13. A. D. Augst, H. J. Kong, and D. J. Mooney, Macromol. Biosci., 6, 623 (2006). https://doi.org/10.1002/mabi.200600069
  14. K. Rezwan, Q. Z. Chen, J. J Blaker, and A. Ahluwalia, Biomaterials, 27, 3413 (2006). https://doi.org/10.1016/j.biomaterials.2006.01.039
  15. S. A. Goldstein, J. Biomech., 20, 1055 (1987). https://doi.org/10.1016/0021-9290(87)90023-6
  16. M. Haghi, M. Hekmatafshar, M. B. Janipour, S. S. Gholizadeh, M. K. Faraz, F. Sayyadifar, and M. Ghaedi, Intl. J. Adv. Biotechnol. Res., 3, 621 (2012).
  17. Z. Wen, S. Ci, S. Mao, S. Cui, G. Lu, K. Yu, S. Luo, Z. He, and J. Chen, J. Power Sources, 7, 100 (2013).
  18. T. Amna, M. S. Hassan, W. S. Shin, H. V. Ba, H. K. Lee, M. S. Khil, and I. H. Hwang, Colloid Surface B, 6, 424 (2012).
  19. H. Hu, W. Zhang, Y. Qiao, X. Jiang, X. Liu, and C. Ding, Acta Biomater., 12, 904 (2011).
  20. M. S. Choi, H. D. Han, H. Seong, E. S. Park, S. C. Chi, and B. C. Shin, J. Korean Chem. Soc., 50, 3 (2006).