DOI QR코드

DOI QR Code

Inflammatory Responses to Hydroxyapatite/Poly(lactic-co-glycolic acid) Scaffolds with Variation of Compositions

하이드록시아파타이트/락타이드 글리콜라이드 공중합체 지지체 조성에 따른 염증 완화 효과

  • Jang, Ji Eun (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University) ;
  • Kim, Hye Min (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University) ;
  • Kim, Hyeongseok (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University) ;
  • Jeon, Dae Yeon (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University) ;
  • Park, Chan Hum (Dept. of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Kwon, Soon Yong (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Chung, Jin Wha (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University)
  • 장지은 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김혜민 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김형석 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 전대연 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 박찬흠 (한림대학교 의과대학 춘천성심병원 이비인후과) ;
  • 권순용 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 정진화 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 나노공학과)
  • Received : 2013.09.17
  • Accepted : 2013.11.06
  • Published : 2014.03.25

Abstract

Hydroxyapatite has osteoconductivity, biocompatibility and noninflammatory, and it has been used clinically as artificial bone. In this study, we prepared hydroxyapatite/poly(lactic-co-glycolic acid) (PLGA) scaffolds using 0, 10, 20, 40 and 60 wt% of hydroxyapatite. We analyzed compressive strength, SEM analysis and FTIR for mechanical property of 3D hydroxyapatite/PLGA scaffolds. For biocompatibility tests, cell proliferation and viability were measured via MTT assay and SEM. We analyzed RT-PCR, FACS, histology (H&E, ED-1) for anti-inflammatory effect. This study showed that hydroxyapatite hybrid scaffolds have low inflammatory reaction compared with the PLGA. This result has a potential for the application of artificial bone graft material.

하이드록시아파타이트는 골 전도가 우수하고 생체 적합성이 우수하며 염증 반응을 일으키지 않아 임상에서 골이식재로 널리 사용되고 있다. 본 연구에서는 하이드록시아파타이트를 함유한 poly(lactic-co-glycolic acid) (PLGA) 지지체를 제조하였으며 생체 내/외의 실험을 통하여 골 이식재로서의 응용가능성을 평가하였다. 하이드록시아파타이트/PLGA 지지체는 0, 10, 20, 40 및 60 wt%의 함량으로 제조하였다. 기계적 특성을 알아보기 위하여 압축강도, SEM, FTIR을 측정하였으며 MTT, RT-PCR, FACS, 조직학적 염색(H&E, ED-1)을 실시하였다. 그 결과 하이드록시아파타이트를 함유한 PLGA 지지체에서 염증 반응이 감소하는 것을 확인할 수 있었으며 골 이식재로서의 가능성을 보여주었다.

Keywords

Acknowledgement

Supported by : 농림수산식품부, 한국연구재단

References

  1. C. Liu, Z. Xia, and J. T. Czernuszka, IChemE, 85, 1051 (2007). https://doi.org/10.1205/cherd06196
  2. Q. Ye, K. Ohsaki, K. Li, D.-J. Li, C.-S. Zhu, T. Ogawa, S. Tenshin, and T. Takano-Yamamoto, Auris Nasus Larynx, 28, 131 (2001). https://doi.org/10.1016/S0385-8146(00)00079-1
  3. P. T. Thevenot, A. M. Nair, J. Shen, P. Lotfi, C.-Y. Ko, and L. Tang, Biomaterials, 31, 3997 (2010). https://doi.org/10.1016/j.biomaterials.2010.01.144
  4. Y. Zhang, C. Wu, T. Luo, S. Li, X. Cheng, and R. J. Miron, Bone, 51, 704 (2012). https://doi.org/10.1016/j.bone.2012.06.029
  5. L. R. Buckner, M. E. Lewis, S. J. Greene, A. J. Q. Timothy, and P. Foster, Cytokine, 63, 151 (2013). https://doi.org/10.1016/j.cyto.2013.04.022
  6. Y. Woo and K. Na, Int. J. Tissue Regen., 3, 63 (2012).
  7. R. M. Boehler, S. Shin, A. G. Fast, R. M. Gower, and L. D. Shea, Biomaterials, 34, 5431 (2013). https://doi.org/10.1016/j.biomaterials.2013.04.009
  8. S. C. Neves, L. S. M. Teixeira, L. Moroni, R. L. Reis, C. A. V. Blitterswijk, N. M. Alves, M. Karperien, and J. F. Mano, Biomaterials, 32, 1068 (2011). https://doi.org/10.1016/j.biomaterials.2010.09.073
  9. S. R. Caliari, M. A. Ramirez, and B. A. C. Harley, Biomaterials, 32, 8990 (2011). https://doi.org/10.1016/j.biomaterials.2011.08.035
  10. D. H. Yang, H. N. Park, J. B. Lee, D. N. Heo, M. S. Bae, and I. K. Kwon, Int. J. Tissue Regen., 2, 125 (2011).
  11. T. H. Kim, J. H. Ko, S. J. Kim, and Y. H. Park, Int. J. Tissue Regen., 2, 1 (2011).
  12. Y. Yang, Y. Zhao, G. Tang, H. Li, X. Yuan, and Y. Fan, Polym. Degrad. Stabil., 93, 1838 (2008). https://doi.org/10.1016/j.polymdegradstab.2008.07.007
  13. M. S. Kim, H. H. Ahn, Y. N. Shin, M. H. Cho, G. Khang, and H. B. Lee, Biomaterials, 28, 5137 (2007). https://doi.org/10.1016/j.biomaterials.2007.08.014
  14. Z.-L. Mou, L.-J. Zhao, Q.-A. Zhang, J. Zhang, and Z.-Q. Zhang, J. Supercrit. Fluids, 58, 398 (2011). https://doi.org/10.1016/j.supflu.2011.07.003
  15. M. H. Fathi, A. Hanifi, and V. Mortazavi, J. Mech. Sci. Tech., 202, 536 (2008).
  16. T. Koshino, T. Murase, T. Takagi, and T. Saito, Biomaterials, 22, 1579 (2001). https://doi.org/10.1016/S0142-9612(00)00318-5
  17. C. Chang, N. Peng, M. He, Y. Teramoto, Y. Nishio, and L. Zhang, Carbohydr. Polym., 91, 7 (2013). https://doi.org/10.1016/j.carbpol.2012.07.070
  18. Y. K. Ko, S. H. Kim, J. S. Jeong, H. J. Ha, S. J. Yoon, J. M. Rhee, M. S. Kim, H. B. Lee, and G. Khang, Polymer(Korea), 31, 14 (2007).
  19. S. J. Kim, H. H. Hong, S. H. Kim, H. L. Kim, S. H. Kim, and G. Khang, Polymer(Korea), 34, 63 (2010).
  20. S. Lee, B. Lee, H. Kim, S. Kim, and Y. G. Eom, J. Korean Wood Sci. & Tech., 37, 310 (2009).
  21. H. Chen, W. Yang, H. Chen, L. Liu, F. Gao, X. Yang, Q. Jiang, Q. Zhang, and Y. Wang, Colloid Surface B, 73, 212 (2009). https://doi.org/10.1016/j.colsurfb.2009.05.020
  22. S. D. Nath, S. Son, A. Sadiasa, Y. K. Min, and B. T. Lee, Int. J. Pharm., 443, 87 (2013). https://doi.org/10.1016/j.ijpharm.2012.12.037
  23. M. C. Chang and J. Tanaka, Biomaterials, 23, 4811 (2002). https://doi.org/10.1016/S0142-9612(02)00232-6
  24. C. C. Wu, S. T. Huang, T. W. Tseng, Q. L. Rao, and H. C. Lin, J. Mol. Struct., 979, 72 (2010). https://doi.org/10.1016/j.molstruc.2010.06.003
  25. C. W. Lee, S. G. Kim, J. Y. Choi, B. D. Choi, C. S. Bae, S. J. Jeong, and M. J. Jeong, Korean J. Electron Microscopy, 35, 121 (2005).
  26. Y. Song, H. Yoo, S. Eum, O. Y. Kim, S. C. Yoo, H. E. Kim, D. Lee, and G. Khang, Polymer(Korea), 35, 189 (2011).
  27. W. Qin, J. Feng, Y. Li, Z. Lin, and B. Shen, Mol. Immunol., 44, 2355 (2007). https://doi.org/10.1016/j.molimm.2006.10.016
  28. R. E. Heravi, F. Hadizadeh, M. Sankian, J. T. Afshari, S. M. Taghdisi, H. Jafarian, and J. Behravan, Eur. J. Pharm. Sci., 44, 479 (2011). https://doi.org/10.1016/j.ejps.2011.09.005
  29. D. K. Kahlon, T. A. Lansdell, J. S. Fisk, and J. J. Tepe, Bioorg. Med. Chem., 17, 3093 (2009). https://doi.org/10.1016/j.bmc.2009.03.002

Cited by

  1. Effects of BMP-2 Delivery in Calcium Phosphate Bone Graft Materials with Different Compositions on Bone Regeneration vol.9, pp.11, 2016, https://doi.org/10.3390/ma9110954