DOI QR코드

DOI QR Code

Comparison between Poly(lactic-co-glycolic acid) Films Contained Natural Polymers on Adhesion and Proliferation of Schwann Cells

천연 고분자가 함유된 락타이드 글리콜라이드 공중합체 필름에서 슈반세포의 부착과 증식 거동 비교평가

  • Ko, Hyun Ah (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University) ;
  • Jang, Ji Eun (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University) ;
  • Kim, Hyeongseok (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University) ;
  • Park, Chan Hum (Dept. of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, College of Medicine, Hallym University) ;
  • Kwon, Soon Yong (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Chung, Jin Wha (Dept. of Orthopedic Surgery, Yeouido St. Mary's Hospital, Catholic University of Korea) ;
  • Khang, Gilson (Dept. of BIN Fusion Tech., and Dept. of Polymer-Nano Sci. & Tech. and Polymer BIN Research Center, Chonbuk National University)
  • 고현아 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 장지은 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 김형석 (전북대학교 BIN 융합공학과, 고분자 나노공학과) ;
  • 박찬흠 (한림대학교 의과대학 춘천성심병원 이비인후과) ;
  • 권순용 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 정진화 (가톨릭대학교 의과대학 여의도성모병원 정형외과) ;
  • 강길선 (전북대학교 BIN 융합공학과, 고분자 나노공학과)
  • Received : 2013.09.17
  • Accepted : 2013.11.06
  • Published : 2014.03.25

Abstract

This study was designed to find an appropriate biomaterial to proliferate Schwann cell (SC). Poly(lactic-co-glycolic acid) (PLGA) films mixed with demineralized bone particle (DBP), small intestine submucosa (SIS), and silk were fabricated by a solvent casting method. Analysis of MTT, SEM and RT-PCR were performed to confirm adhesion and proliferation of SC. Contact angle of films was assayed for hydrophilicity of films. We confirmed that PLGA/DBP 20% film showed higher hydrophilicity, promoted adhesion and proliferation of SC than other films. It was concluded that PLGA/DBP film can be applied for the scaffold biomaterials for the regeneration of central nerve system.

본 연구에서는 신경세포인 슈반세포(SC)의 증식에 가장 적합한 생체재료를 연구하였다. 락타이드 글리콜라이드 공중합체(PLGA)에 탈미네랄 골분(demineralized bone particle, DBP), 소장점막하조직(small intestine submucosa, SIS), 그리고 실크를 각각 20% 첨가하여, 용매 증발법으로 각각의 필름을 제조하고, SC세포의 부착과 증식을 확인하기 위해 MTT, SEM 그리고 RT-PCR 분석을 실시하였다. 또한 필름의 친수성을 확인하기 위해 접촉각을 측정하였다. 분석 결과, PLGA/DBP 20% 필름에서 높은 친수성을 보였으며, SC의 부착과 증식률이 다른 군에 비해 크게 증가한 것을 확인할 수 있었다. 따라서 PLGA/DBP 필름은 중추신경재생 재료로 활용할 수 있을 것으로 사료된다.

Keywords

Acknowledgement

Supported by : 농림수산식품부, 한국연구재단

References

  1. X. M. Xu, A. Chen, V. Guenard, N. Kleitman, and M. B. Bunge, Neurocytol, 26, 1 (1997). https://doi.org/10.1023/A:1018557923309
  2. J. L. Salzer and R. P. Bunge, J. Cell Biology, 84, 739 (1980). https://doi.org/10.1083/jcb.84.3.739
  3. A. Atala, J. Endourol., 14, 49 (2000). https://doi.org/10.1089/end.2000.14.49
  4. N. Zhang, H. Yan, and X. Wen, Brain Res., 49, 48 (2005). https://doi.org/10.1016/j.brainresrev.2004.11.002
  5. G. Khang, J. H. Jeon, J. C. Cho, J. M. Rhee, and H. B. Lee, Polymer(Korea), 23, 861 (1999).
  6. S. J. Holland, B. J. Tighe, and P. L. Could, J. Control. Res., 4, 155 (1986). https://doi.org/10.1016/0168-3659(86)90001-5
  7. Y. Iwasaki, S. Sawada, N. Nakabayashi, G. Khang, H. B. Lee, and K. Ishihara, Biomaterials, 20, 2185 (1999). https://doi.org/10.1016/S0142-9612(99)00123-4
  8. G. Khang, S. J. Lee, J. H. Lee, Y. S. Kim, and H. B. Lee, Macromol. Res., 8, 276 (2000).
  9. C. B. Huggins and M. R. Urist, Science, 150, 893 (1970).
  10. M. R. Urist, Science, 167, 896 (1970). https://doi.org/10.1126/science.167.3919.896
  11. B. L. Hogan, Harvey Lect., 92, 83 (1996).
  12. T. Ebenbal, H. Bengtsson, and S. Soderstrom, J. Neurosci. Res., 51, 139 (1998). https://doi.org/10.1002/(SICI)1097-4547(19980115)51:2<139::AID-JNR2>3.0.CO;2-E
  13. P. Lonn, K. Zaia, C. Israelsson, S. Althini, D. Usoskin, A. Kylberg, and T. Ebendal, Neurochem. Res., 30, 753 (2005). https://doi.org/10.1007/s11064-005-6868-6
  14. G. Khang, J. M. Rhee, P. Shin, I. Y. Kim, B. Lee, S. J. Lee, Y. M. Lee, H. B. Lee, and I. Lee, Macromol. Res., 10, 158 (2002). https://doi.org/10.1007/BF03218266
  15. S. F. Badylak, R. Record, K. Lindberg, J. Hodde, and K. Park, J. Biomater. Sci. Polym. Ed., 9, 863 (1998). https://doi.org/10.1163/156856298X00208
  16. K. S. Park, C. M. Jin, S. J. Yun, K. D. Hong, S. H. Kim, M. S. Kim, J. M. Rhee, G. Khang, and H. B. Lee, Polymer(Korea), 29, 501 (2005).
  17. J. Chen, G. H. Altman, V. Karageorgiou, R. Horan, A. Collette, and V. Volloch, J. Biomed. Mater. Res., 67, 559 (2003).
  18. H. J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003). https://doi.org/10.1038/nature01809
  19. H. J. Jin, S. V. Fridrikh, and G. C. Rutledge, Biomacromolecules, 3, 1233 (2002). https://doi.org/10.1021/bm025581u
  20. H. K. Soong and K. R. Kenyon, Ophthalmology, 91, 479 (1984). https://doi.org/10.1016/S0161-6420(84)34273-7
  21. B. Panilaitis, G. H. Altman, J. Chen, H. J. Jang, V. Karageorgiou, and D. L. Kaplan, Biomaterials, 24, 3079 (2003). https://doi.org/10.1016/S0142-9612(03)00158-3
  22. L. Meinel, O. Betz, R. Fajardo, S. Hofmann, and A. Nazarian, Bone, 39, 922 (2006). https://doi.org/10.1016/j.bone.2006.04.019
  23. H. L. Kim, H. Yoo, H. J. Park, Y. G. Kim, D. Lee, Y. S. Kang, and G. Khang, Polymer(Korea), 35, 7 (2011).
  24. S. Porter, M. B. Clark, L. Glaser, and R. P. Bunge, J. Neurosci., 6, 3070 (1986).
  25. T. K. Morrissey, N. Kleitman, and R. P. Bunge, J. Neurosci., 11, 2433 (1991).
  26. H. L. Kim, S. J. Kim, H. Yoo, M. Hong, D. Lee, and G. Khang, Int. J. Tissue Regen., 1, 81 (2010).
  27. B. K. Gu, M. S. Kim, S. J. Park, and C. Kim, Int. J. Tissue Regen., 2, 83 (2011).
  28. M. Yamamoto and Y. Tabata, Int. J. Tissue Regen., 4, 36 (2013).