DOI QR코드

DOI QR Code

Estimation of Rheological Properties of Highly Concentrated Polymer Bonded Explosive Simulant by Microstructure Analysis

미세구조 해석을 통한 고농축 복합화약 시뮬란트의 유변물성 예측

  • Lee, Sangmook (Division of Chemical Engineering, Dankook University) ;
  • Hong, In-Kwon (Division of Chemical Engineering, Dankook University) ;
  • Lee, Jae Wook (Applied Rheology Center, Department of Chemical and Biomolecular Engineering, Sogang University) ;
  • Shim, Jung Seob (Agency for Defense Development)
  • Received : 2013.10.29
  • Accepted : 2013.12.11
  • Published : 2014.03.25

Abstract

The rheological properties of highly concentrated polymer bonded explosive simulant were studied by using poly(ethylene-co-vinyl acetate) with 30 and 60% vinyl acetate (VA) content as a binder, respectively. Calcium carbonate and Dechlorane, whose physical properties are similar to resarch department explosive (RDX)'s, were used as fillers. The suspensions were mixed in a batch melt mixer and it was possible to fill 75 v% at maximum. From dynamic mechanical analysis, Dechlorane showed higher interaction with binder resins than that with calcium carbonate fillers. The effects of microstructural change on the rheological properties of the suspensions were investigated by a plate-plate rheometer with constant shear rate and constant shear stress modes, respectively. The theoretical maximum packing fraction of EVA31/Dechlorane suspension obtained from Krieger-Dougherty equation was 70 v% and it was thought that 2000 Pa was proper shear stress condition for this melt processing.

고분자 결합제로 vinyl acetate(VA) 함량이 각각 30, 60%인 poly(ethylene-co-vinyl acetate)(EVA)를 사용하여 고농축 복합화약 시뮬란트의 유변학적 특성을 연구하였다. 충전제로는 탄산칼슘 및 research department explosive (RDX)와 물리적 특성이 유사한 Dechlorane을 사용하였다. 회분식 용융 혼련기를 사용하여 농축 현탁계를 혼련하였는데 최대 75 v%까지 충전이 가능하였다. 동적 기계적 물성 변화를 측정한 결과 Dechlorane이 탄산칼슘보다 결합제수지와 더 높은 상호작용을 보였다. 일정 전단속도 방식과 일정 전단응력 방식의 평판-평판 레오미터를 사용하여 현탁계의 미세구조의 변화가 유변물성에 미치는 영향을 조사하였고, Krieger-Dougherty 식을 사용하여 최대 충전 부피분율 및 고유점도를 구하였다. EVA31/Dechlorane 현탁계의 최대 충전 부피분율은 약 70 v%이고, 혼련시 전단응력이 약 2000 Pa 정도 부가되는 것이 적절함을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 국방과학연구소

References

  1. L. Sun, M. Park, R. Salovey, and J. J. Aklonis, Polym. Eng. Sci., 32, 777 (1992). https://doi.org/10.1002/pen.760321204
  2. Y. Wang and J. J. Wang, Polym. Eng. Sci., 39, 190 (1999). https://doi.org/10.1002/pen.11407
  3. K. J. Kim and J. L. White, Polym. Eng. Sci., 39, 2189 (1999). https://doi.org/10.1002/pen.11608
  4. Y. Suetsugu and J. L. White, J. Appl. Polym. Sci., 28, 1481 (1983). https://doi.org/10.1002/app.1983.070280421
  5. Y. Wang and M. J. Yu, Polym. Compos., 21, 111 (2000).
  6. J. F. Le Meins, P. Moldenaers, and J. Mewis, Ind. Eng. Chem. Res., 41, 6297 (2002). https://doi.org/10.1021/ie020117r
  7. A. J. Poslinski, M. E. Ryan, R. K. Gupta, S. G. Seshadri, and F. J. Frechette, J. Rheol., 32, 703 (1988). https://doi.org/10.1122/1.549987
  8. S. Ottani, A. Valenza, and F. P. La Mantia, Rheol. Acta, 27, 172 (1988). https://doi.org/10.1007/BF01331902
  9. I. M. Krieger, Adv. Colloid Interface Sci., 3, 111 (1972). https://doi.org/10.1016/0001-8686(72)80001-0
  10. A. Einstein, Ann. Phys. (Leipzig), 19, 289 (1906).
  11. A. Einstein, Ann. Phys. (Leipzig), 34, 591 (1911).
  12. R.G. Larson, The Structure and Rheology of Complex Fluids, Oxford University Press, New York, 1999.
  13. H. A. Barnes, J. F. Hutton, and K. Walters, An Introduction to Rheology, Elsevier, Amsterdam, 1989.
  14. I. M. Krieger and T. J. Dougherty, Trans. Soc. Rheol., 3, 137 (1959). https://doi.org/10.1122/1.548848
  15. G. N. Choi and I. M. Krieger, J. Colloid Interface Sci., 113, 101 (1986). https://doi.org/10.1016/0021-9797(86)90210-9
  16. R. J. Hunter, Foundations of Colloid Science, Oxford University Press, Oxford, 2001.
  17. L. E. Nielsen, Polymer Rheology, Marcel Dekker, New York, 1977.
  18. E. J. Hinch and L. G. Leal, J. Fluid Mech., 52, 683 (1972). https://doi.org/10.1017/S002211207200271X
  19. L. E. Nielsen, J. Polym. Sci., Part A: Polym. Chem., 17, 1897 (1979).
  20. T. B. Lewis and L. E. Nielsen, Trans. Soc. Rheol., 12, 421 (1968). https://doi.org/10.1122/1.549114
  21. Y. Bomal and P. Godard, Polym. Eng. Sci., 36, 237 (1996). https://doi.org/10.1002/pen.10408
  22. Y. W. Inn and S. Q. Wang, Langmuir, 11, 1589 (1995). https://doi.org/10.1021/la00005a029
  23. J. E. Stamhuis, Polym. Compos., 9, 72 (1988). https://doi.org/10.1002/pc.750090110
  24. V. Pasanovic-Zujo, R. K. Gupta, and S. N. Bhattacharya, Rheol. Acta, 43, 99 (2004). https://doi.org/10.1007/s00397-003-0324-9
  25. K. Jang, J. W. Lee, I.-K. Hong, and S. Lee, Korea-Aust. Rheol. J., 25, 145 (2013). https://doi.org/10.1007/s13367-013-0015-8
  26. M. C. S. Perera, U. S. Ishiaku, and Z. A. M. Ishak, Polym. Degrad. Stabil., 68, 393 (2000). https://doi.org/10.1016/S0141-3910(00)00024-0
  27. M. A. Osman, A. Atallah, T. Schweizer, and H. C. Ottinger, J. Rheol., 48, 1167 (2004). https://doi.org/10.1122/1.1784782

Cited by

  1. Non-Newtonian behavior observed via dynamic rheology for various particle types in energetic materials and simulant composites vol.29, pp.1, 2017, https://doi.org/10.1007/s13367-017-0002-6