DOI QR코드

DOI QR Code

Carbon Nanotubes Reinforced Poly(ethylene terephthalate) Nanocomposites

탄소나노튜브로 강화시킨 Poly(ethylene terephthalate) 나노복합재료

  • Choi, Soohee (Department of Organic Materials and Fiber Engineering, Soongsil University) ;
  • Jeong, Youngjin (Department of Organic Materials and Fiber Engineering, Soongsil University)
  • 최수희 (숭실대학교 유기신소재파이버공학과) ;
  • 정영진 (숭실대학교 유기신소재파이버공학과)
  • Received : 2013.11.15
  • Accepted : 2013.11.28
  • Published : 2014.03.25

Abstract

Multi-walled carbon nanotube (MWNT) reinforced poly(ethylene terephthalate) (PET) composites are studied. To increase the interfacial interactions between PET and MWNTs, the MWNTs are functionalized with bishydroxy-ethylene-terephthalate (BHET). The functionalized MWNTs are melt blended into PET matrix using a twin screw extruder. The amount of MWNTs loaded in PET matrix ranges from 0.5 to 2.0 wt%. After compounding and spinning, the filaments are post-drawn and annealed. To verify the chemical modifications of carbon nanotubes, Raman, $^1H$ NMR, XPS, TGA and FE-SEM are used. The nanocomposites are also analyzed with DSC, TGA, and UTM. These tests show that crystallization temperature and thermal degradation temperature increase due to the functionalized MWNTs. Also, tensile test shows that yield strength and toughness increase more than 30% with addition of only 1 wt% of MWNTs. These results show that the introduction of BHET onto the MWNTs is a very effective way in manufacturing MWNT/PET composite.

다중벽 탄소나노튜브(MWNT)로 보강된 폴리에스터(PET) 복합재료에 관한 연구를 수행하였다. PET와 MWNT간의 계면결합력을 향상시키기 위하여, MWNT 표면에 bishydroxyethylene-terephthalate(BHET)를 도입하였다. 이렇게 기능화된 MWNT를 0.5~2.0 wt% 범위에서 이축압출기를 이용하여 PET와 용융 혼합하였다. MWNT/PET 복합재료를 필라멘트로 방사하고, 이를 연신 및 열처리하여 특성 분석을 하였다. 이로부터 복합섬유의 결정화 온도와 열분해 온도가 MWNT로 인하여 증가함을 알 수 있었으며, 항복응력과 인성은 MWNT의 1 wt%의 첨가만으로도 30%이상 증가함을 알 수 있었다. 따라서 MWNT를 BHET로 기능화하는 방법은 폴리에스터에 탄소나노튜브를 효과적으로 분산시키고 계면결합력을 증가시키는데 매우 효과적임을 알 수 있었다.

Keywords

Acknowledgement

Supported by : 한국에너지기술평가원(KETEP)

References

  1. S. Iijima, Nature, 354, 56 (1991). https://doi.org/10.1038/354056a0
  2. T. W. Ebbesen and P. M. Ajayan, Nature, 358, 220 (1992). https://doi.org/10.1038/358220a0
  3. L. Chico, V. H. Crepi, L. X. Benedict, S. G. Louie, and M. L. Cohen, Phys. Rev. Lett., 76, 971 (1996). https://doi.org/10.1103/PhysRevLett.76.971
  4. P. Ball, Nature, 382, 207 (1996). https://doi.org/10.1038/382207a0
  5. C. M. Niu, E. K. Sichel, R. Hoch, D. Moy, and H. Tennent, Appl. Phys. Lett., 70, 1480 (1997). https://doi.org/10.1063/1.118568
  6. E. T. Thostenson, Z. F. Ten, and T. W. Chou, Compos. Sci. Tech., 61, 1899 (2001). https://doi.org/10.1016/S0266-3538(01)00094-X
  7. Michael J. O'Connell, Carbon Nanotubes: Properties and Applications, CRC Press, New York, 2012.
  8. S. Subramoney, Adv. Mater., 10, 1157 (1998). https://doi.org/10.1002/(SICI)1521-4095(199810)10:15<1157::AID-ADMA1157>3.0.CO;2-N
  9. R. Haggenmmueller, H. H. Gommansb, A. G. Rinzler, J. E. Fisher, and K. I. Winey, Chem. Phys. Letts., 330, 219 (2000). https://doi.org/10.1016/S0009-2614(00)01013-7
  10. K. Lpzano, J. Bonilla-Rios, and E. V. Barrera, J. Appl. Polym. Sci., 80, 1162 (2001). https://doi.org/10.1002/app.1200
  11. Z. Jin, K. P. Pramoda, G. Xu, and S. H. Goh, Chem. Phys. Lett., 337, 43 (2001). https://doi.org/10.1016/S0009-2614(01)00186-5
  12. D. Qian, E. C. Dichey, R. Andrews, and T. Rantell, Appl. Phys. Lett., 76, 2868 (2000). https://doi.org/10.1063/1.126500
  13. L. S. Shadler, S. C. Giannaris, and P. M. Ajayan, Appl. Phys. Lett., 73, 3842 (1998). https://doi.org/10.1063/1.122911
  14. J. U. Ha, J. Hong, M. Kim, J. K. Choi, D. W. Park, and S. E. Shim, Polymer(Korea), 37, 722 (2013).
  15. Y. J. Yim, M. K. Seo, H. Y. Kim, and S. J. Park, Polymer(Korea), 36, 494 (2012).
  16. G. Y. Heo, K. Y. Rhee, and S. J. Park, Polymer(Korea), 35, 548 (2011).
  17. S. Travalas and V. Drakonakis, Macromolecules, 39, 9150 (2006). https://doi.org/10.1021/ma0613584
  18. K. A. Anand, U. S. Agarwal, A. Nisal, and R. Joseph, Eur. Polym., 43, 2279 (2007). https://doi.org/10.1016/j.eurpolymj.2007.03.020
  19. K. A. Anand, U. S. Agarwal, A. Nisal, and R. Joseph, Polymer, 47, 3976 (2006). https://doi.org/10.1016/j.polymer.2006.03.079
  20. H. J. Lee, S. J. Oh, J. Y. Choi, J. W. Kim, J. W. Han, L. S. Tan, and J. B. Baek, Chem. Mater., 17, 5057 (2005). https://doi.org/10.1021/cm051218t
  21. Y. Wang, J. Deng, K. Wang, Q. Zhang, and Q. Fu, J. Appl. Polym. Sci., 104, 3695 (2007). https://doi.org/10.1002/app.25677
  22. M. S. Dresselhausa, G. Dresselhausc, A. Jorio, A. G. Souz Filho, and R. Saito, Carbon, 40, 2043 (2002). https://doi.org/10.1016/S0008-6223(02)00066-0
  23. T. Amari and Y Ozaki, Macromolecules, 34, 7459 (2001). https://doi.org/10.1021/ma002102f
  24. X. Li, Y. D. Huang, L. Liu, and H. L. Cao, J. Appl. Polym. Sci., 102, 2500 (2006). https://doi.org/10.1002/app.24649
  25. J. Jin, M. Song, and F. Pan, Thermochim. Acta, 456, 25 (2007). https://doi.org/10.1016/j.tca.2007.02.003
  26. R. Haggenmueller, J. E. Fischer, and K. I. Winey, Macromolecules, 39, 2964 (2006). https://doi.org/10.1021/ma0527698

Cited by

  1. An experimental study of the friction and wear on counterpart roughness of silica particle reinforced nano composites vol.50, pp.2, 2014, https://doi.org/10.3796/KSFT.2014.50.2.162
  2. Changes in the Interfacial Properties between Poly(butylene terephthalate) and Multi-walled Carbon Nanotubes Bonded with Various Functional Groups vol.42, pp.1, 2014, https://doi.org/10.7317/pk.2018.42.1.87