DOI QR코드

DOI QR Code

In Vitro Antibacterial Effect of the Combination of Galla rhois ethanol extracts and Sodium chlorate against Intramacrophage Brucella abortus

  • Cha, Chun-Nam (Engineering Research Institute, Department of Industrial Systems Engineering, Gyeongsang National University) ;
  • Hong, Il-Hwa (Gyeongsang Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Yu, Eun-Ah (Tongyeong National Quarantine Station, Ministry of Health & Welfare) ;
  • Park, Eun-Kee (Medical Humanities and Social Medicine, College of Medicine, Kosin University) ;
  • Yoo, Chang-Yeol (Department of Computer Information, Gyeongnam Provincial Namhae College) ;
  • Kim, Suk (Gyeongsang Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University) ;
  • Lee, Hu Jang (Gyeongsang Research Institute of Life Sciences, College of Veterinary Medicine, Gyeongsang National University)
  • Received : 2014.02.17
  • Accepted : 2014.03.08
  • Published : 2014.03.30

Abstract

This study investigated the antibacterial effects of GR ethanol extracts (GRE), sodium chlorate (SC) and a combination of GRE and SC (GS) on Brucella abortus (B. abortus). The antibacterial activities of GRE, SC and GS towards B. abortus were evaluated by incubating B. abortus with GRE, SC and GS. Following treatment with GRE, SC and GS, B. abortus survival and intracellular proliferation in macrophages were monitored. In the cellular cytotoxicity assay, GRE, SC and GS are not cytotoxic at concentrations less than $400{\mu}g/ml$, 15 mM and 0.6GS (1 of GS, GRE $1,000{\mu}g/ml$ + SC 30 mM), respectively. The viability of B. abortus was markedly decreased in a dose-dependent manner in all treatment groups. In addition, B. abortus intracellular proliferation within macrophages was significantly reduced in cells treated with GRE ($400{\mu}g/mL$), SC (15 mM) and 0.5GS (GRE $500{\mu}g/mL$ + SC 15 mM) after 48 hr-incubation (GRE, p < 0.01; SC and 0.5GS, p < 0.001). Especially, in the treatment of GS, the synergistic effect of GRE and SC treatment on B. abortus in macrophage was observed. In conclusion, GS is useful as an antibacterial candidate against B. abortus, and can be applied in the field of meat and milk hygiene.

본 연구는 오배자 에탄올 추출물 (GRE), 염소산나트륨 (SC) 그리고 오배자 에탄올 추출물과 염소산나트륨 합제 (GS)의 B. abortus에 대한 항균효과를 확인하기 위해 수행되었다. GRE, SC 그리고 GS를 B. abortus에 처리하여 배양한 후, B. abortus의 생존수를 확인하였으며, 마우스 탐식세포 내 감염된 B. abortus의 증식 억제효과를 경시별 (2, 24, 48시간)로 조사하였다. GRE, SC 그리고 GS는 각각 $400{\mu}g/mL$ 이하, 15 mM 그리고 0.6GS (GS 1, GRE $1,000{\mu}g/mL$ + SC 30 mM) 이하의 농도에서 세포독성을 나타나지 않았다. 모든 처리구에서 B. abortus의 생존율은 용량-의존적으로 현저하게 감소하는 결과를 나타내었다. 또한, GRE ($400{\mu}g/mL$), SC (15 mM) 그리고 0.5GS (GRE $500{\mu}g/mL$ + SC 15 mM)를 처리한 세포에서 배양 48시간 후에, B. abortus의 증식이 통계적으로 유의성 있게 감소하였으며 (GRE, p < 0.01; SC and 0.5GS, p < 0.001), 특히, GS를 처리한 경우, B. abortus의 세포내 증식이 GRE와 SC의 상승작용에 의한 강력한 항균효과를 나타내었다. 결론적으로, GS는 B. abortus에 대한 항균물질로서 유용할 뿐만 아니라, 식육과 우유 위생 분야에 적용할 수 있을 것으로 생각된다.

Keywords

References

  1. Lopes, L. B., Nicolino, R. and Haddad, J. P. A. Brucellosis - risk factors and prevalence: A review. Open Vet. Sci. J., 4, 72-84, 2010. https://doi.org/10.2174/1874318801004010072
  2. Trujillo, I.Z., Zavala, A.N., Caceres, J.G. and Miranda, C.Q.: Brucellosis. Infect. Dis. Clin. North Am. 8, 225-241 (1994).
  3. Corbel, M.J.: Brucellosis: an overview. Emerg. Infect. Dis. 3, 213-221 (1977).
  4. Atluri, V.L., Xavier, M.N., Jong, M.F., Hartigh, A.B. and Tsolis, R.M.: Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65, 523-541 (2011). https://doi.org/10.1146/annurev-micro-090110-102905
  5. Diaz Aparicio, E.: Epidemiology of brucellosis in domestic animals caused by Brucella melitensis, Brucella suis and Brucella abortus. Rev. Sci. Tech. Off. Int. Epiz., 32, 53-60 (2013). https://doi.org/10.20506/rst.32.1.2187
  6. Namanda, A.T., Kakai, R. and Otsyula, M.: The role of unpasteurized "hawked" milk in the transmission of brucellosis in Eldoret municipality, Kenya. J. Infect. Dev. Ctries. 3, 260-266 (2009).
  7. World Health Organization (WHO): Brucellosis in humans and animals. WHO press, Geneva, pp. 50-52 (2006).
  8. Lee, J.J., Bae, J.H., Kim, D.H., Lim, J.J., Kim, D.G., Lee, H.J., Min, W., Rhee, M.H., Chang, H.H., Park, H. and Kim, S.: Intracellular replication inhibitory effects of Galla Rhois ethanol extract for Brucella abortus infection. J. Ethnopharmacol. 138, 602-609 (2011). https://doi.org/10.1016/j.jep.2011.10.007
  9. Liautard, J.P., Gross, A., Dornand, J., Kohler, S.: Interactions between professional phagocytes and Brucella spp. Microbiol. 12, 197-206 (1996).
  10. Ariza, J., Bosilkovski, M., Cascio, A., Colmenero, J.D., Corbel, M.J., Falagas, M.E., Memish, Z.A., Roushan, M.R., Rubinstein, E., Sipsas, N.V., Solera, J., Young, E.J. and Pappas, G.: Perspectives for the treatment of brucellosis in the 21st century: the Ioannina recommendations. PLoS Med. 4, e317 (2007). https://doi.org/10.1371/journal.pmed.0040317
  11. Skalsky, K., Yahav, D., Bishara, J., Pitlik, S., Leibovici, L. and Paul, M.: Treatment of human brucellosis: systematic review and meta-analysis of randomised controlled trials. Br. Med. J. 336, 701-704 (2008). https://doi.org/10.1136/bmj.39497.500903.25
  12. Yousefi-Nooraie, R., Mortaz-Hejri, S., Mehrani, M. and Sadeghipour, P.: Antibiotics for treating human brucellosis. Cochrane Database Syst. Rev. 10, CD007179 (2012).
  13. Cha, C.N., Yu, E.A., Park, E.K., Choi, H., Kim, S. and Lee, H.J.: Antibacterial effects of Galla Rhois extract against Streptococcus suis infection in mice. J. Fd. Hyg. Safety, 28, 95-98 (2013). https://doi.org/10.13103/JFHS.2013.28.2.095
  14. Lee, J.J., Kim, D.H., Lim, J.J., Kim, D.G., Min, W., Kim, G.S., Lee, H.J., Rhee, M.H., Park, H., Kim, S.C., Chang, H.H. and Kim, S.: Anticoccidial effect of supplemental dietary Galla Rhois against infection with Eimeria tenella in chickens. Avian Pathol. 41, 403-407 (2012). https://doi.org/10.1080/03079457.2012.702888
  15. Djakpo, O. and Yao, W.: Rhus chinensis and Galla Chinensis - folklore to modern evidence: review. Phytother. Res. 24, 1739-1747 (2010). https://doi.org/10.1002/ptr.3215
  16. Ahn, Y.J., Lee, H.S., Oh, H.S., Kim, H.T. and Lee, Y.H.: Antifungal activity and mode of action of Galla Rhois-derived phenolics against phytopathogenic fungi. Pestic. Biochem. Phys. 81, 105-112 (2005). https://doi.org/10.1016/j.pestbp.2004.10.003
  17. Chen, J.C., Ho, T.Y., Chang, Y.S., Wu, S.L. and Hsiang, C.Y.: Antidiarrheal effect of Galla Chinensis on the Escherichia coli heat-labile enterotoxin and ganglioside interaction. J. Ethnopharmacol. 103, 385-391 (2006). https://doi.org/10.1016/j.jep.2005.08.036
  18. National Toxicology Program (NTP): The toxicology and carcinogenesis studies of sodium chlorate (CAS No. 777-09-9) in F33/N rats and $B6C3F_1$ mice (Drinking water studies). National Institute Health (NIH), Bethesda, pp. 5-6 (2005).
  19. Anderson, R.C., Buckley, S.A., Kubena, L.F., Stanker, L.H., Harvey, R.B. and Nisbet, D.J.: Bactericidal effect of sodium chlorate on Escherichia coli O157:H7 and Salmonella Typhimurium DT104 in rumen contents in vitro. J. Food Prot. 63, 1038-1042 (2000). https://doi.org/10.4315/0362-028X-63.8.1038
  20. Anderson, R.C., Harvey, R.B., Byrd, J.A., Callaway, T.R., Genovese, K.J., Edrington, T.S., Jung, Y.S., McReynolds, J.L. and Nisbet, D.J.: Novel preharvest strategies involving the use of experimental chlorate preparations and nitro-based compounds to prevent colonization of food-producing animals by foodborne pathogens. Poult. Sci. 84, 649-654 (2005). https://doi.org/10.1093/ps/84.4.649
  21. Anderson RC, Hume ME, Genovese KJ, Callaway TR, Jung YS, Edrington TS, Poole TL, Harvey RB, Bischoff KM, Nisbet DJ. Effect of drinking water administration of experimental chlorate ion reparations on Salmonella enteric serovar Typhimurium colonization in weaned and finished pigs. Vet. Res. Commun. 28, 179-189 (2004). https://doi.org/10.1023/B:VERC.0000017369.04003.2b
  22. BioModels Database: Nitrogen metabolism - Brucella abortus (strain 2308). EMBL-EBI, Hinxton, UK, http://www.ebi.ac.uk/biomodels-main/BMID000000106272 (2013).
  23. Mosmann, T.: Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J. Immunol. Methods, 65, 55-63 (1983). https://doi.org/10.1016/0022-1759(83)90303-4
  24. Bosilkovski, M., Krteva, L., Dimzova, M. and Kondova, I.: Brucellosis in 418 patients from the Balkan Peninsula: exposure-related differences in clinical manifestations, laboratory test results, and therapy outcome. Int. J. Infect. Dis. 11, 342-347 (2007). https://doi.org/10.1016/j.ijid.2006.10.002
  25. Young, E.J.: Brucella species. In Mandell, Douglas and Bennet's Principles and Practice of Infectious Disease, 5th Ed. (Mandell, G.L., Bennett, J.E. and Dolin, R. eds.) Churchill Livingstone, Philadelphia, pp. 2386-2393 (2000).
  26. Prior, S., Gander, B., Lecaroz, C., Irache, J.M. and Gamazo, C.: Gentamicin-loaded microspheres for reducing the intracellular Brucella abortus load in infected monocytes. J. Antimicrob. Chemother. 53, 981-988 (2004). https://doi.org/10.1093/jac/dkh227
  27. Skendros, P. and Boura, P.: Immunity to brucellosis. Rev. Sci. Tech. 32, 137-147 (2013). https://doi.org/10.20506/rst.32.1.2190
  28. Cai, Y., Luo, Q., Sun, M. and Corke, H.: Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sci. 74, 2157-2184 (2004). https://doi.org/10.1016/j.lfs.2003.09.047
  29. Kratz, J.M., Andrighetti-Frohner, C.R., Leal, P.C., Nunes, R.J., Yunes, R.A., Trybala, E., Berqstrom, T., Barardi, C.R. and Simoes, C.M.: Evaluation of anti-HSV-2 activity of gallic acid and pentyl gallate. Biol. Pharm. Bull. 31, 903-907 (2008). https://doi.org/10.1248/bpb.31.903
  30. Lee, J.J., Kim, D.H., Kim, D.G., Lee, H.J., Min, W., Rhee, M.H., Yun, B.S. and Kim, S.: Phellinus baumii extract influences pathogenesis of Brucella abortus in phagocyte by disrupting the phagocytic and intracellular trafficking pathway. J. Appl. Microbiol. 114, 329-338 (2012).