DOI QR코드

DOI QR Code

BOLD Responses to Acupuncture on Each Side of ST36

족삼리 좌우측 자침에 대한 BOLD 반응

  • Yeo, Sujung (Research Group of Pain and Neuroscience, WHO Collaborating Centre, East-West Medical Research Institute, Kyung Hee University) ;
  • Bae, Seong-In (College of Oriental Medicine, Kyung Hee University) ;
  • Choe, Ilwhan (College of Oriental Medicine, Kyung Hee University) ;
  • Jahng, Geon-Ho (College of Medicine, Kyung Hee University) ;
  • Lim, Sabina (Research Group of Pain and Neuroscience, WHO Collaborating Centre, East-West Medical Research Institute, Kyung Hee University)
  • 여수정 (경희대학교 동서의학연구소) ;
  • 배성인 (경희대학교 한의과대학 경혈학교실) ;
  • 최일환 (경희대학교 한의과대학 경혈학교실) ;
  • 장건호 (경희대학교 의과대학) ;
  • 임사비나 (경희대학교 동서의학연구소)
  • Received : 2014.03.05
  • Accepted : 2014.03.14
  • Published : 2014.03.27

Abstract

Objectives : There has been some controversy about the modulatory effects on brain function during acupuncture on each side of the same acupoint. This study was designed to investigate and compare the blood oxygen level-dependent(BOLD) responses of acupuncture on each side of ST36. Methods : Fourteen healthy subjects were recruited for imaging and received acupuncture or placebo stimulations either on the left or on the right acupoint of ST36 in each scan. For the voxel-wise statistical analysis, one sample T-test and the within-subject analysis of variance(ANOVA) test were performed using SPM8 software. Results : This study showed that acupuncture on each side of ST36 showed different BOLD signal patterns. Higher BOLD responses after acupuncture stimulations at the left ST36 compared to the right were observed mainly in the parahippocampal gyrus(BA 28), dorsolateral prefrontal cortex(DLPFC, BA 44), thalamus, culmen and claustrum. We investigated the different neural responses between rest and activation periods of placebo and acupuncture stimulations on each side of ST36. Acupuncture at the right ST36 elicited activation mainly in the insula, supplementary motor area(SMA) and anterior cingulate cortex(ACC), while acupuncture at the left ST36 elicited activation mainly in the insula, primary somatosensory cortex(SI, BA 2) and DLPFC(BA 44). Conclusions : To our knowledge, this is the first reported functional MRI study directly comparing when needling at the right and at the left side of ST36. This study's preliminary results proved to be evidence of acupuncture's different effects when performed on opposite sides of an acupoint.

연구배경 : 침의 효과와 신경생리학적 기전에 관한 연구가 기능자기공명을 이용하여 활발히 이루어지고 있다. 좌우측 동일한 혈위에 대한 자침이 뇌 기능에 미치는 효과에 대하여 논란이 되고 있다. 그러나 동일한 혈위에 대한 좌측 또는 우측 자침이 뇌기능에 미치는 영향에 대한 연구는 부족한 점이 있다. 목적 : 본 연구의 목적은 좌우측 족삼리 자침에 의한 BOLD (blood oxygen level-dependent) 반응을 살펴보고 비교하는 것이다. 방법 : 14명의 건강한 남자를 대상으로 좌우측 족삼리에 가짜 침과 진짜 침 자극을 하였다. 좌우측 족삼리 자침이 뇌 기능에 미치는 영향을 알아보고 비교하기 위해 4가지 실험 디자인을 선택하였다. 첫째와 셋째 스캔은 우측 족삼리에, 둘째와 넷째 스캔은 좌측 족삼리에 가짜침과 진짜침 자극을 주었다. 또한, 자침은 자극기에 자침 및 자극을 주었으며, 자극기가 끝남과 동시에 발침하기를 반복하였다. 통계분석을 위해 SPM8을 이용하여 one sample T-test와 within-subject the analysis of variance (ANOVA) test 를 실시하였다. 통계 결과 좌측과 우측 족삼리 자침에 의해 BOLD 반응의 차이를 보이는 9개 영역의 ROI (regions of interest)에서 BOLD 신호를 추출하였다. 결과 : 좌측과 우측 족삼리의 자침에 의한 BOLD반응은 서로 다른 방식으로 나타났다. 좌우측 족삼리 자침에 의한 BOLD반응을 비교한 결과, 좌측 족삼리 자침은 우측 족삼리 자침에 비해 주로 해마옆 이랑 (브로드만 영역 28), 배외측 전전두 피질 (브로드만 영역 44), 시상, 소뇌정상과 기저핵의 전장에서 더 높은 활성반응이 나타났다. 좌우측 족삼리 자침에 의한 BOLD반응을 각각 조사한 결과, 우측 족삼리 자침은 주로 대뇌섬과 보조운동영역 그리고 전대상이랑 (브로드만 영역 24)에서 활성화가 나타났으며, 좌측 족삼리 자침은 주로 대뇌섬과 일차 체감각 피질 (브로드만 영역 2) 그리고 배외측 전전두 피질 (브로드만 영역 44)에서 활성화가 나타났다. 결론 : 본 연구는 기능적 자기공명영상을 이용하여 좌측과 우측의 족삼리 자침이 인간의 뇌에 미치는 영향을 알아보고 비교한 최초의 연구이다. 본 연구 결과는 좌측과 우측 족삼리 자침은 통증조절효과에 서로 다른 방식으로 영향을 미칠 수 있다는 것을 의미한다. 또한, 본 연구 결과는 좌측과 우측 자침이 뇌 신경에 미치는 영향의 차이에 대한 증거가 된다.

Keywords

References

  1. Eisenberg DM, Davis RB, Ettner SL, Appel S, Wilkey S, Van Rompay M et al. Trends in alternative medicine use in the United States, 1990-1997: results of a follow-up national survey. JAMA. 1998 ; 280 : 1569-75. https://doi.org/10.1001/jama.280.18.1569
  2. Wang SM, Kain ZN, White PF. Acupuncture analgesia: II. Clinical considerations. Anesth Analg. 2008 ; 106 : 611-21, table of contents. https://doi.org/10.1213/ane.0b013e318160644d
  3. Dhond RP, Kettner N, Napadow V. Neuroimaging acupuncture effects in the human brain. J Altern Complement Med. 2007 ; 13 : 603-16. https://doi.org/10.1089/acm.2007.7040
  4. Lewith GT, White PJ, Pariente J. Investigating acupuncture using brain imaging techniques: the current state of play. Evid Based Complement Alternat Med. 2005 ; 2 : 315-9. https://doi.org/10.1093/ecam/neh110
  5. Hui KK, Liu J, Makris N, Gollub RL, Chen AJ, Moore CI et al. Acupuncture modulates the limbic system and subcortical gray structures of the human brain: evidence from fMRI studies in normal subjects. Hum Brain Mapp. 2000 ; 9 : 13-25. https://doi.org/10.1002/(SICI)1097-0193(2000)9:1<13::AID-HBM2>3.0.CO;2-F
  6. Biella G, Sotgiu ML, Pellegata G, Paulesu E, Castiglioni I, Fazio F. Acupuncture produces central activations in pain regions. Neuroimage. 2001 ; 14 : 60-6. https://doi.org/10.1006/nimg.2001.0798
  7. Hsieh JC, Tu CH, Chen FP, Chen MC, Yeh TC, Cheng HC et al. Activation of the hypothalamus characterizes the acupuncture stimulation at the analgesic point in human: a positron emission tomography study. Neurosci Lett. 2001 ; 307 : 105-8. https://doi.org/10.1016/S0304-3940(01)01952-8
  8. Zhang WT, Jin Z, Huang J, Zhang L, Zeng YW, Luo F et al. Modulation of cold pain in human brain by electric acupoint stimulation: evidence from fMRI. Neuroreport. 2003 ; 14 : 1591-6. https://doi.org/10.1097/00001756-200308260-00010
  9. Dougherty DD, Kong J, Webb M, Bonab AA, Fischman AJ, Gollub RL. A combined [11C]diprenorphine PET study and fMRI study of acupuncture analgesia. Behav Brain Res. 2008 ; 193 : 63-8. https://doi.org/10.1016/j.bbr.2008.04.020
  10. Kong J, Ma L, Gollub RL, Wei J, Yang X, Li D et al. A pilot study of functional magnetic resonance imaging of the brain during manual and electroacupuncture stimulation of acupuncture point (LI-4 Hegu) in normal subjects reveals differential brain activation between methods. J Altern Complement Med. 2002 ; 8 : 411-9. https://doi.org/10.1089/107555302760253603
  11. Jeun SS, Kim JS, Kim BS, Park SD, Lim EC, Choi GS et al. Acupuncture stimulation for motor cortex activities: a 3T fMRI study. Am J Chin Med. 2005 ; 33 : 573-8. https://doi.org/10.1142/S0192415X0500317X
  12. Chae Y, Lee H, Kim H, Sohn H, Park JH, Park HJ. The neural substrates of verum acupuncture compared to non-penetrating placebo needle: an fMRI study. Neurosci Lett. 2009 ; 450 : 80-4. https://doi.org/10.1016/j.neulet.2008.11.048
  13. Yoo SS, Teh EK, Blinder RA, Jolesz FA. Modulation of cerebellar activities by acupuncture stimulation: evidence from fMRI study. Neuroimage. 2004 ; 22 : 932-40. https://doi.org/10.1016/j.neuroimage.2004.02.017
  14. Hui KK, Liu J, Marina O, Napadow V, Haselgrove C, Kwong KK et al. The integrated response of the human cerebro-cerebellar and limbic systems to acupuncture stimulation at ST 36 as evidenced by fMRI. Neuroimage. 2005 ; 27 : 479-96. https://doi.org/10.1016/j.neuroimage.2005.04.037
  15. Napadow V, Makris N, Liu J, Kettner NW, Kwong KK, Hui KK. Effects of electroacupuncture versus manual acupuncture on the human brain as measured by fMRI. Hum Brain Mapp. 2005 ; 24 : 193-205. https://doi.org/10.1002/hbm.20081
  16. Yan B, Li K, Xu J, Wang W, Liu H, Shan B et al. Acupoint-specific fMRI patterns in human brain. Neurosci Lett. 2005 ; 383 : 236-40. https://doi.org/10.1016/j.neulet.2005.04.021
  17. Li K, Shan B, Xu J, Liu H, Wang W, Zhi L et al. Changes in FMRI in the human brain related to different durations of manual acupuncture needling. J Altern Complement Med. 2006 ; 12 : 615-23. https://doi.org/10.1089/acm.2006.12.615
  18. Gareus IK, Lacour M, Schulte AC, Hennig J. Is there a BOLD response of the visual cortex on stimulation of the vision-related acupoint GB 37? J Magn Reson Imaging. 2002 ; 15 : 227-32. https://doi.org/10.1002/jmri.10059
  19. Park S. A Study on the Concept of the Right and the Left in Oriental Medicine. Seoul, Republic of Korea: Graduate school of Kyung Hee University. 1998.
  20. Park S, Kim J, Kim M. Effects of hetero-segmental electroacupuncture on formalin induced pain in the rat. J Korean Acupunc Moxibustion Soc. 2000 ; 17 : 231-46.
  21. Moon S, Cho K, Ko C. Effects of opposing-needling on upper limb on cerebral blood flow in Ischemic stroke patients. Kyung- Hee Med. 2000 ; 16 : 94-101.
  22. Wu MT, Sheen JM, Chuang KH, Yang P, Chin SL, Tsai CY et al. Neuronal specificity of acupuncture response: a fMRI study with electroacupuncture. Neuroimage. 2002 ; 16 : 1028-37. https://doi.org/10.1006/nimg.2002.1145
  23. Zhang WT, Jin Z, Cui GH, Zhang KL, Zhang L, Zeng YW et al. Relations between brain network activation and analgesic effect induced by low vs. high frequency electrical acupoint stimulation in different subjects: a functional magnetic resonance imaging study. Brain Res. 2003 ; 982 : 168-78. https://doi.org/10.1016/S0006-8993(03)02983-4
  24. Sarlani E, Farooq N, Greenspan JD. Gender and laterality differences in thermosensation throughout the perceptible range. Pain. 2003 ; 106 : 9-18. https://doi.org/10.1016/S0304-3959(03)00211-2
  25. Wu MT, Hsieh JC, Xiong J, Yang CF, Pan HB, Chen YC et al. Central nervous pathway for acupuncture stimulation: localization of processing with functional MR imaging of the brain--preliminary experience. Radiology. 1999 ; 212 : 133-41. https://doi.org/10.1148/radiology.212.1.r99jl04133
  26. Pariente J, White P, Frackowiak RS, Lewith G. Expectancy and belief modulate the neuronal substrates of pain treated by acupuncture. Neuroimage. 2005 ; 25 : 1161-7. https://doi.org/10.1016/j.neuroimage.2005.01.016
  27. Cho ZH, Hwang SC, Wong EK, Son YD, Kang CK, Park TS et al. Neural substrates, experimental evidences and functional hypothesis of acupuncture mechanisms. Acta Neurol Scand. 2006 ; 113 : 370-7. https://doi.org/10.1111/j.1600-0404.2006.00600.x
  28. Kong J, Kaptchuk TJ, Polich G, Kirsch I, Vangel M, Zyloney C et al. Expectancy and treatment interactions: a dissociation between acupuncture analgesia and expectancy evoked placebo analgesia. Neuroimage. 2009 ; 45 : 940-9. https://doi.org/10.1016/j.neuroimage.2008.12.025
  29. Habib R, Nyberg L, Tulving E. Hemispheric asymmetries of memory: the HERA model revisited. Trends Cogn Sci. 2003 ; 7 : 241-5. https://doi.org/10.1016/S1364-6613(03)00110-4
  30. Westerberg CE, Marsolek CJ. Hemispheric asymmetries in memory processes as measured in a false recognition paradigm. Cortex. 2003 ; 39 : 627-42. https://doi.org/10.1016/S0010-9452(08)70857-8
  31. Rogers BP, Carew JD, Meyerand ME. Hemispheric asymmetry in supplementary motor area connectivity during unilateral finger movements. Neuroimage. 2004 ; 22 : 855-9. https://doi.org/10.1016/j.neuroimage.2004.02.027
  32. Shin HW, Sohn YH, Hallett M. Hemispheric asymmetry of surround inhibition in the human motor system. Clin Neurophysiol. 2009 ; 120 : 816-9. https://doi.org/10.1016/j.clinph.2009.02.004
  33. Frost JA, Binder JR, Springer JA, Hammeke TA, Bellgowan PS, Rao SM et al. Language processing is strongly left lateralized in both sexes. Evidence from functional MRI. Brain. 1999 ; 122 ( Pt 2) : 199-208. https://doi.org/10.1093/brain/122.2.199
  34. Pujol J, Deus J, Losilla JM, Capdevila A. Cerebral lateralization of language in normal left-handed people studied by functional MRI. Neurology. 1999 ; 52 : 1038-43. https://doi.org/10.1212/WNL.52.5.1038
  35. Billingsley RL, McAndrews MP, Crawley AP, Mikulis DJ. Functional MRI of phonological and semantic processing in temporal lobe epilepsy. Brain. 2001 ; 124 : 1218-27. https://doi.org/10.1093/brain/124.6.1218
  36. Ahmad Z, Balsamo LM, Sachs BC, Xu B, Gaillard WD. Auditory comprehension of language in young children: neural networks identified with fMRI. Neurology. 2003 ; 60 : 1598-605. https://doi.org/10.1212/01.WNL.0000059865.32155.86
  37. Vingerhoets G, Van Borsel J, Tesink C, van den Noort M, Deblaere K, Seurinck R et al. Multilingualism: an fMRI study. Neuroimage. 2003 ; 20 : 2181-96. https://doi.org/10.1016/j.neuroimage.2003.07.029
  38. Schonwiesner M, Krumbholz K, Rubsamen R, Fink GR, von Cramon DY. Hemispheric asymmetry for auditory processing in the human auditory brain stem, thalamus, and cortex. Cereb Cortex. 2007 ; 17 : 492-9.
  39. Wendt PE, Risberg J. Cortical activation during visual spatial processing: relation between hemispheric asymmetry of blood flow and performance. Brain Cogn. 1994 ; 24 : 87-103. https://doi.org/10.1006/brcg.1994.1005
  40. Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA. Language lateralization in left-handed and ambidextrous people: fMRI data. Neurology. 2002 ; 59 : 238-44. https://doi.org/10.1212/WNL.59.2.238
  41. Wood AG, Harvey AS, Wellard RM, Abbott DF, Anderson V, Kean M et al. Language cortex activation in normal children. Neurology. 2004 ; 63 : 1035-44. https://doi.org/10.1212/01.WNL.0000140707.61952.CA
  42. Szaflarski JP, Holland SK, Schmithorst VJ, Byars AW. fMRI study of language lateralization in children and adults. Hum Brain Mapp. 2006 ; 27 : 202-12. https://doi.org/10.1002/hbm.20177
  43. Plante E, Schmithorst VJ, Holland SK, Byars AW. Sex differences in the activation of language cortex during childhood. Neuropsychologia. 2006 ; 44 : 1210-21. https://doi.org/10.1016/j.neuropsychologia.2005.08.016
  44. Briellmann RS, Saling MM, Connell AB, Waites AB, Abbott DF, Jackson GD. A high-field functional MRI study of quadri-lingual subjects. Brain Lang. 2004 ; 89 : 531-42. https://doi.org/10.1016/j.bandl.2004.01.008
  45. Hull R, Vaid J. Laterality and language experience. Laterality. 2006 ; 11 : 436-64. https://doi.org/10.1080/13576500600691162
  46. Sommer IE, Ramsey NF, Kahn RS. Language lateralization in schizophrenia, an fMRI study. Schizophr Res. 2001 ; 52 : 57-67. https://doi.org/10.1016/S0920-9964(00)00180-8
  47. Woermann FG, Jokeit H, Luerding R, Freitag H, Schulz R, Guertler S et al. Language lateralization by Wada test and fMRI in 100 patients with epilepsy. Neurology. 2003 ; 61 : 699-701. https://doi.org/10.1212/01.WNL.0000078815.03224.57
  48. Anderson DP, Harvey AS, Saling MM, Anderson V, Kean M, Abbott DF et al. FMRI lateralization of expressive language in children with cerebral lesions. Epilepsia. 2006 ; 47 : 998-1008. https://doi.org/10.1111/j.1528-1167.2006.00572.x
  49. Siedentopf CM, Golaszewski SM, Mottaghy FM, Ruff CC, Felber S, Schlager A. Functional magnetic resonance imaging detects activation of the visual association cortex during laser acupuncture of the foot in humans. Neurosci Lett. 2002 ; 327 : 53-6. https://doi.org/10.1016/S0304-3940(02)00383-X
  50. Afifi AK, Bergman RA. Functional Neuroanatomy. USA: Mc- Graw-Hill Company. 2005.
  51. Yeo S, Choe IH, van den Noort M, Bosch P, Lim S. Consecutive acupuncture stimulations lead to significantly decreased neural responses. J Altern Complement Med. 2010 ; 16 : 481-7. https://doi.org/10.1089/acm.2009.0606
  52. Huettel AS SA, McCarthy G. Functional Magnetic Resonance Imaging. Sunderland. Sunderland, MA: Sinauer Associates. 2004 : 217-51.