DOI QR코드

DOI QR Code

Comparison of relative fitness between zirconia single coping and 3-unit fixed partial dentures (FPDs) manufactured by dental CAD/CAM system

치과 캐드/캠 시스템으로 제작된 지르코니아 single 코핑과 3-unit 구조물의 상대적 적합도 비교

  • Lee, Wan-Sun (Department of Public Health Science, Graduate school, Korea University) ;
  • Park, Jong-Kyoung (Department of Public Health Science, Graduate school, Korea University) ;
  • Kim, Wook-Tae (Department of Dental Technology & Science, Shin-Han University)
  • 이완선 (고려대학교 대학원 보건과학과) ;
  • 박종경 (고려대학교 대학원 보건과학과) ;
  • 김욱태 (신한대학교 치기공학과)
  • Received : 2014.01.12
  • Accepted : 2014.03.11
  • Published : 2014.03.31

Abstract

Purpose: The purpose of this study was to assess the marginal and mesial fitness of zirconia single copings and 3-unit fixed partial dentures (FPDs) manufactured with an identical model. Materials and Methods: An epoxy model in which the maxillary right 2nd premolar is lost and maxillary 1st premolar and 2nd molar are formed as abutments was manufactured and scanned by using a laser scanner. A ten units of zirconia single copings were manufactured for maxillary 1st premolar and 2nd molar, respectively and the same number of 3-unit FPDs were manufactured. For the measurements of fitness, the manufactured silicone replicas were divided into four parts and the fitness were measured by digital microscope at measurement points (P1, P2, P3, P4 and P5) of each plane. The measured gaps were classified into three categories: marginal gap (MG, P1), axial gap (AG, average of P2 and P3), occlusal gap (OG, average of P4 and P5). Results: The ranges of MG, AG and OG for single copings were 18.47 - 40.54 ${\mu}m$, 39.73 - 73.61 ${\mu}m$ and 116.90 - 134.69 ${\mu}m$, respectively. The ranges of MG, AG and OG for 3-unit FPDs were 45.95 - 87.44 ${\mu}m$, 23.78 - 57.00 ${\mu}m$ and 99.89 - 131.06 ${\mu}m$, respectively. Conclusion: The result of the study shows that the MGs for 3-unit FPDs were higher than those of single copings, though they are within the range of clinical acceptance, indicating that the use of more homogeneous zirconia block and modification of sintering processes are needed to ensure the prevention of increase of gap in 3-unit FPDs.

목적: 본 연구의 목적은 동일한 모형에서 제작된 지르코니아 single 코핑과 3-unit 구조물의 변연 및 내면 적합도를 평가하는 것이다. 연구 재료 및 방법: 상악 우측 제2소구치가 상실되고 상악 제1소구치와 제2대구치가 지대치로 형성된 에폭시 모형(epoxy model)을 제작한 후 레이저 스캐너를 이용하여 스캔 하였다. CAD 소프트웨어를 이용하여 지르코니아 구조물을 디자인하고 CAM을 사용하여 지르코니아 single 코핑과 3-unit 구조물을 제작 하였다. 지르코니아 single 코핑은 상악 제1소구치, 제2대구치에서 각각 10개씩 제작 되었고 지르코니아 3-unit 구조물도 10개가 제작 되었다. 적합도 측정을 위하여 제작된 실리콘 복제(silicone replica)를 4등분하고 각 면의 측정 위치(P1, P2, P3, P4, P5)에서 디지털 현미경을 사용하여 적합도를 측정하였다. 각 위치에서 측정된 불일치 값들은 변연 불일치(MG, P1), 축 불일치(AG, P2와 P3의 평균), 교합 불일치(OG, P4와 P5의 평균)의 세 범주로 분류하였다. 결과: Single 코핑에서 변연 불일치의 범위는 18.47 - 40.54 ${\mu}m$, 축 불일치의 범위는 39.73 - 73.61 ${\mu}m$, 교합 불일치의 범위는 116.90 - 134.69 ${\mu}m$이었다. 3-unit 구조물에서 변연 불일치의 범위는 45.95 - 87.44 ${\mu}m$이고, 축 불일치의 범위는 23.78 - 57.00 ${\mu}m$이고, 교합 불일치는 99.89 - 131.06 ${\mu}m$이었다. 결론: 본 연구의 결과에 따르면 single 코핑에 비해 3-unit 구조물의 변연 불일치가 증가하였지만 임상학적 수용 범위(- 120 ${\mu}m$) 내에 있었으며 3-unit 구조물의 불일치 증가를 방지하기 위해서 더욱 균질한 지르코니아 블록 사용과 소결공정들을 조절해야 할 것이다.

Keywords

References

  1. Raigrodski AJ, Chiche GJ. The safety and efficacy of anterior ceramic fixed partial dentures: a review of the literature. J Prosthet Dent 2001;86:520-5. https://doi.org/10.1067/mpr.2001.120111
  2. Raigrodski AJ. Contemporary materials and technologies for all-ceramic fixed partial dentures: ㅁ review of the literature. J Prosthet Dent 2004;92:557-62. https://doi.org/10.1016/j.prosdent.2004.09.015
  3. Miyazaki T, Hotta Y, Kunii J, Kuriyama S, Tamaki Y. A review of dental CAD/CAM: current status and future perspectives from 20 years of experience. Dent Mater J 2009;28:44-56. https://doi.org/10.4012/dmj.28.44
  4. Filser F, Kocher P, Weibel F, Luthy H, Scharer P, Gauckler LJ. Reliability and strength of all-ceramic dental restorations fabricated by direct ceramic machining (DCM). Int J Comput Dent 2001;4:89-106.
  5. Bindl A, Mormann WH. Marginal and internal fit of all ceramic CAD/CAM crown copings on chamfer preparations. J Oral Rehabil 2005;32:441-7. https://doi.org/10.1111/j.1365-2842.2005.01446.x
  6. Degrange M, Cheylan JM, Samama Y. Prosthodontics of the future: cementing or bonding? In: Roulet JF, Degrange M, editors. Adhesion: the silent revolution in dentistry. Chicago; Quintessence; 2000. p. 277-301.
  7. Holmes JR, Bayne SC, Holland GA, Sulik WD. Considerations in measurement of marginal fit. J Prosthet Dent 1989;62:405-8. https://doi.org/10.1016/0022-3913(89)90170-4
  8. Kohorst P, Brinkmann H, Li J, Borchers L, Stiesch M. Marginal accuracy of four unit zirconia fixed dental prostheses fabricated using different computer aided design/computer aided manufacturing systems. Eur J Oral Sci 2009;117:319-25. https://doi.org/10.1111/j.1600-0722.2009.00622.x
  9. Reich S, Kappe K, Teschner H, Schmitt J. Clinical fit of four unit zirconia posterior fixed dental prostheses. Eur J Oral Sci 2008;116:579-84. https://doi.org/10.1111/j.1600-0722.2008.00580.x
  10. Reich S, Wichmann M, Nkenke E, Proeschel P. Clinical fit of all ceramic three unit fixed partial dentures, generated with three different CAD/CAM systems. Eur J Oral Sci 2005;113:174-9. https://doi.org/10.1111/j.1600-0722.2004.00197.x
  11. Wettstein F, Sailer I, Roos M, Hammerle CH. Clinical study of the internal gaps of zirconia and metal frameworks for fixed partial dentures. Eur J Oral Sci 2008;116:272-9. https://doi.org/10.1111/j.1600-0722.2008.00527.x
  12. Tinschert J, Natt G, Mautsch W, Spiekermann H, Anusavice KJ. Marginal fit of alumina-and zirconiabased fixed partial dentures produced by a CAD/CAM system. Oper Dent 2001;26:367-74.
  13. Coli P, Karlsson S. Fit of a new pressure-sintered zirconium dioxide coping. Int J Prosthodont 2004;17:59-64.
  14. Kokubo Y, Ohkubo C, Tsumita M, Miyashita A, Vult von Steyern P, Fukushima S. Clinical marginal and internal gaps of Procera AllCeram crowns. J Oral Rehabil 2005;32:526-30. https://doi.org/10.1111/j.1365-2842.2005.01458.x
  15. Grenade C, Mainjot A, Vanheusden A. Fit of single tooth zirconia copings: comparison between various manufacturing processes. J Prosthet Dent 2011;105:249-55. https://doi.org/10.1016/S0022-3913(11)60040-1
  16. Bindl A, Mormann WH. Fit of all-ceramic posterior fixed partial denture frameworks in vitro. Int J Periodontics Restorative Dent 2007;27:567-75.
  17. Beuer F, Aggstaller H, Edelhoff D, Gernet W, Sorensen J. Marginal and internal fits of fixed dental prostheses zirconia retainers. Dent Mater 2009;25:94-102. https://doi.org/10.1016/j.dental.2008.04.018
  18. Kunii J, Hotta Y, Tamaki Y, Ozawa A, Kobayashi Y, Fujishima A, Miyazaki T, Fujiwara T. Effect of sintering on the marginal and internal fit of CAD/CAM-fabricated zirconia frameworks. Dent Mater J 2007;26:820-6. https://doi.org/10.4012/dmj.26.820
  19. Beuer F, Naumann M, Gernet W, Sorensen JA. Precision of fit: zirconia three-unit fixed dental prostheses. Clin Oral Investig 2009;13:343-9. https://doi.org/10.1007/s00784-008-0224-6
  20. Gonzalo E, Suarez MJ, Serrano B, Lozano JF. Marginal fit of Zirconia posterior fixed partial dentures. Int J Prosthodont 2008;21:398-9.
  21. Coli P, Karlsson S. Precision of a CAD/CAM technique for the production of zirconium dioxide copings. Int J Prosthodont 2004;17:577-80.
  22. McLean JW, von Fraunhofer JA. The estimation of cement film thickness by an in vivo technique. Br Dent J 1971;131:107-11. https://doi.org/10.1038/sj.bdj.4802708