DOI QR코드

DOI QR Code

Single Magnetic Bead Detection in a Microfluidic Chip Using Planar Hall Effect Sensor

  • Kim, Hyuntai (Department of Materials Science and Engineering, Chungnam National University) ;
  • Reddy, Venu (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, Kun Woo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Jeong, Ilgyo (Department of Materials Science and Engineering, Chungnam National University) ;
  • Hu, Xing Hao (Department of Materials Science and Engineering, Chungnam National University) ;
  • Kim, CheolGi (Department of Materials Science and Engineering, Chungnam National University)
  • Received : 2013.10.11
  • Accepted : 2013.11.07
  • Published : 2014.03.31

Abstract

In this study, we fabricate an integrated microfluidic chip with a planar Hall effect (PHE) sensor for single magnetic bead detection. The PHE sensor was constructed with a junction size of $10{\mu}m{\times}10{\mu}m$ using a trilayer structure of Ta(3 nm)/NiFe(10 nm)/Cu(1.2 nm)/IrMn(10 nm)/Ta(3 nm). The sensitivity of the PHE sensor was 19.86 ${\mu}V/Oe$. A diameter of 8.18 ${\mu}m$ magnetic beads was used, of which the saturation magnetization was ~2.1 emu/g. The magnetic susceptibility ${\chi}$ of these magnetic beads was calculated to be ~0.14. The diluted magnetic beads solution was introduced to the microfluidic channel attributing a single bead flow and simultaneously the PHE sensor voltage was measured to be 0.35 ${\mu}V$. The integrated microchip was able to detect a magnetic moment of $1.98{\times}10^{-10}$ emu.

Keywords

References

  1. B. Srinivasan, Y. Li, Y. Jing, Y. Xu, X. Yao, C. Xing, and J. Wang, Angew. Chem. Int. Ed. 48, 2764 (2009). https://doi.org/10.1002/anie.200806266
  2. G. Li, S. Sun, R. J. Wilson, R. L. White, N. Pourmand, and S. X. Wang, Sens. Actuators A 126, 98 (2006). https://doi.org/10.1016/j.sna.2005.10.001
  3. C. R. Tamanaha, S. P. Mulvaney, J. C. Rife, and L. J. Whitman, Biosens. Bioelectron. 24, 1 (2008). https://doi.org/10.1016/j.bios.2008.02.009
  4. X. J. A. Janssen, L. J. van Ijzendoorn, and M. W. J. Prins, Biosens. Bioelectron. 23, 833 (2008). https://doi.org/10.1016/j.bios.2007.08.023
  5. T. Q. Hung, S. Oh, J.-R. Jeong, and C. G. Kim, Sens. Actuators A 157, 42 (2010). https://doi.org/10.1016/j.sna.2009.11.033
  6. P. P. Freitas, R. Ferreria, S. Cardoso, and F. Cardoso, J. Phys.: Condens. Matter 19, 165221 (2007). https://doi.org/10.1088/0953-8984/19/16/165221
  7. P. P. Freitas, H. A. Ferreira, D. L. Graham, L. A. Clarke, M. D. Amaral, V. Martins, L. Fonseca, and J. S. Cabral, in: M. Johnson (Ed.), Magnetoelectronics, Elsevier, Amsterdam, 2004.
  8. Francois Montaigne, A. Schuhl, F. Nguyen Van Dau, and A. Encinas, Sens. Actuators A 81, 324 (2000). https://doi.org/10.1016/S0924-4247(99)00102-8
  9. Y. Bason, L. Klein, J. B. Yau, X. Hong, J. Hoffman, and C. H. Ahn, J. Appl. Phys. 99, R701 (2006).
  10. M. Volmer, J. Neamtu, Physica B 403, 350 (2008). https://doi.org/10.1016/j.physb.2007.08.047
  11. I. Jeong, Y.-J. Eu, K. W. Kim, X. H. Hu, B. Sinha, and C. G. Kim, J. Magnetics 17, 302 (2012). https://doi.org/10.4283/JMAG.2012.17.4.302
  12. B. Sinha, S. Anandakumar, S. Oh, and C. Kim, Sens. Actuators A 182, 34 (2012). https://doi.org/10.1016/j.sna.2012.05.001
  13. R. Venu, B. Lim, X. H. Hu, I. Jeong, T. S. Ramulu, and C. G. Kim, Microfludics and Nanofludics 14, 277 (2013). https://doi.org/10.1007/s10404-012-1046-z

Cited by

  1. Properties of Exchange Bias Coupling Field and Coercivity Using the Micron-size Holes Formation Inside GMR-SV Film vol.25, pp.4, 2015, https://doi.org/10.4283/JKMS.2015.25.4.117
  2. Hybrid normal metal/ferromagnetic nanojunctions for domain wall tracking vol.7, pp.1, 2017, https://doi.org/10.1038/s41598-017-06292-y
  3. Detection of a magnetic bead by hybrid nanodevices using scanning gate microscopy vol.6, pp.5, 2016, https://doi.org/10.1063/1.4943147