DOI QR코드

DOI QR Code

Crystallographic and Magnetic Properties of Nano-sized Nickel Substituted Cobalt Ferrites Synthesized by the Sol-gel Method

  • Choi, Won-Ok (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Lee, Jae-Gwang (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Kang, Byung-Sub (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University) ;
  • Chae, Kwang Pyo (Nanotechnology Research Center, Department of Nano Science and Mechanical Engineering, Konkuk University)
  • Received : 2013.12.13
  • Accepted : 2014.02.11
  • Published : 2014.03.31

Abstract

Nano-sized nickel substituted cobalt ferrite powders, $Ni_xCo_{1-x}Fe_2O_4$ ($0.0{\leq}x{\leq}1.0$), were fabricated by the sol-gel method, and their crystallographic and magnetic properties were studied. All the ferrite powders showed a single spinel structure, and behaved ferrimagnetically. When the nickel substitution was increased, the lattice constants and the sizes of particles of the ferrite powders decreased. The M$\ddot{o}$ssbauer absorption spectra of $Ni_xCo_{1-x}Fe_2O_4$ ferrite powders could be fitted with two six-line subspectra, which were assigned to a tetrahedral A-site and octahedral B-sites of a typical spinel crystal structure. The increase in values of the magnetic hyperfine fields indicated that the superexchange interaction was stronger, with the increased nickel concentration in $Ni_xCo_{1-x}Fe_2O_4$. This could be explained using the cation distribution, which can be written as, $(Co_{0.28-0.28x}Fe_{0.72+0.28x})[Ni_xCo_{0.72-0.72x}Fe_{1.28-0.28x}]O_4$. The two values of the saturation magnetization and the coercivity decreased, as the rate of nickel substitution was increased. These decreases could be explained using the cation distribution, the magnetic moment, and the magneto crystalline anisotropy constant of the substituted ions.

Keywords

References

  1. O. Caltun, H. Chiriac, N. Lupu, I. Dumitru, and B. A. Rao, J. Optoelectro. Adv. Mater. 9, 1158 (2007).
  2. N. N. Greenwood and T. C. Gibb, Mossbauer Spectroscopy, Chapman and Hall Ltd. London (1971), p. 261.
  3. V. Blasko, V. Petkov, V. Rusanov, Ll. M. Martinez, B. Martinez, J. S. Munoz, and M. Mikhove, J. Magn. Magn. Mater. 162, 331 (1996). https://doi.org/10.1016/S0304-8853(96)00277-6
  4. A. S. Albaguergye, J. D. Ardisson, and W. A. A. Macedo, J. Appl. Phys. 87, 4352 (2000). https://doi.org/10.1063/1.373077
  5. A. Goldman, Modern Ferrite Technology, Van Nostrand Reinhold, New York (1990), p. 217.
  6. M. Mozaffari, J. Amighian, and E. Darsheshdar, J. Magn. Magn. Mater. 350, 19 (2014). https://doi.org/10.1016/j.jmmm.2013.08.008
  7. A. Ghasemi, A. P. Jr., and C. F. C. Machado, J. Magn. Magn. Mater. 324, 2193 (2012). https://doi.org/10.1016/j.jmmm.2012.02.019
  8. V. L. Mathe and A. D. Sheikh, Physica B 405, 3594 (2010). https://doi.org/10.1016/j.physb.2010.05.047
  9. J. G. Lee, J. Y. Park, and C. S. Kim, J. Mater. Sci. 53, 3965 (1998).
  10. V. K. Sankaranarayana, Q. A. Pankhurst, D. P. E. Dickson, and C. E. Johson, J. Magn. Magn. Mater. 125, 199 (1993). https://doi.org/10.1016/0304-8853(93)90838-S
  11. K. Oda, T. Yoshio, K. Hirata, K. O. Oka, and K. Takabashi, J. Jpn. Soc. Powder Powder Metal. 29, 170 (1982). https://doi.org/10.2497/jjspm.29.170
  12. W. O. Choi, Master thesis, Graduate School of Konkuk Univ. (2014).
  13. B. D. Cullity, Elements of X-Ray Diffraction, Addition Wesley Co. (1978), p. 102.
  14. C. V.-Aarca, P. Lavela, and J. L. Tirado, J. Power Sources 196, 6978 (2011). https://doi.org/10.1016/j.jpowsour.2010.10.101
  15. P. Didukh, J. M. Grenecheb, A.-S. Waniewska, P. C. Fannin, and L. Casas, J. Magn. Magn. Mater. 613, 242 (2002).
  16. M. Z. Schmalzrifd. J. Phys. Chem. 28, 203 (1961).
  17. R. K. Datta and B. Roy, J. Amer. Coram. Soc. 50, 578 (1967). https://doi.org/10.1111/j.1151-2916.1967.tb15002.x

Cited by

  1. Effects of Ga Substitution on Crystallographic and Magnetic Properties of Co Ferrites vol.20, pp.1, 2015, https://doi.org/10.4283/JMAG.2015.20.1.026
  2. Crystallographic and Magnetic Properties of Co, Zn, Ni-Zn Substituted Nano-size Manganese Ferrites Synthesized by Sol-gel Method vol.21, pp.3, 2016, https://doi.org/10.4283/JMAG.2016.21.3.308
  3. Preparation, spectroscopic and thermal analysis of hexa-hydrazine nickel cobalt ferrous succinate precursor and study of solid-state properties of its nanosized thermal product, Ni0.5Co0.5Fe2O4 vol.128, pp.2, 2017, https://doi.org/10.1007/s10973-016-6011-8