DOI QR코드

DOI QR Code

Isomerization of Endo-tetrahydrodicyclopentadiene over Y Zeolite Catalysts

Y 제올라이트 촉매 상에서 Endo-Tetrahydrodicyclopentadiene의 이성화 반응

  • Kim, Jinhan (Department of Chemical Engineering, Kongju National University) ;
  • Kim, Ji-Yun (Department of Chemical Engineering, Kongju National University) ;
  • Park, Eunseo (Department of Chemical Engineering, Kongju National University) ;
  • Han, Jeongsik (Agency for Defense Development) ;
  • Kwon, Tae Soo (Poongsan R&D Institute) ;
  • Park, Young-Kwon (School of Environmental Engineering, University of Seoul) ;
  • Jeon, Jong-Ki (Department of Chemical Engineering, Kongju National University)
  • Received : 2013.09.30
  • Accepted : 2013.11.17
  • Published : 2014.02.10

Abstract

Synthesis of exo-tetrahydrodicyclopentadiene (exo-THDCPD) through the isomerization of endo-tetrahydrodicyclopentadiene (endo-THDCPD) was investigated over HY zeolite catalysts. Conversion of endo-THDCPD increased with the increase of $Si/Al_2$ ratio of HY zeolite catalysts, which can be attributed to increase of acid strength with increase of $Si/Al_2$ ratio. Yield of exo-THDCPD, however, was the highest over HY with $Si/Al_2$ ratio of 30, because the production of cyclopentadiene and oligomers was minimized. The optimal reaction temperature was $180^{\circ}C$ because the higher reaction temperature increased the production of by-products. The yield of exo-THDCPD also increased with the amount of the catalyst in feed. In the isomerization reaction of endo-THDCPD using the HY zeolite catalysts, it was confirmed that the internal diffusion resistance in the pore of catalysts would have more significant effects on the reaction activity than that of the external diffusion resistance of catalysts.

HY 제올라이트 촉매 상에서 endo-THDCPD의 이성화 반응을 통한 exo-THDCPD 제조에 관한 연구를 수행하였다. HY 제올라이트 촉매의 $Si/Al_2$ 비가 증가할 때 endo-THDCPD의 전환율이 증가하는 경향을 보였는데 이는 산점의 세기가 증가했기 때문으로 해석할 수 있다. 그러나 $Si/Al_2$ 비가 30인 HY 제올라이트 촉매를 사용한 경우에 최대의 exo-THDCPD 수율을 얻을 수 있었는데, 부산물인 CPD와 oligomer의 생성이 적기 때문으로 해석할 수 있다. 반응 온도가 증가할수록 부산물 생성이 증가하는 것을 고려하여 $180^{\circ}C$를 최적 반응 온도로 선정할 수 있었다. 촉매의 함량을 증가시키면 exo-THDCPD 수율을 증가시킬 수 있다. HY 제올라이트 촉매를 사용한 endo-THDCPD의 이성화 반응에서 촉매 외부확산 저항보다 촉매 기공 내부확산 저항이 반응 활성에 더 큰 영향을 미친다는 것을 확인할 수 있었다.

Keywords

References

  1. L. G. Cannell, High density fuels, US Patent 4,059,644 (1977).
  2. I. Palmova, J. Kose, J. Schӧngut, M. Marek, and K. Stepanek, Experimental and modeling studies of oligomerization and copolymerization of dicyclopentadiene, Chem. Eng. Sci., 56, 927-935 (2001). https://doi.org/10.1016/S0009-2509(00)00307-9
  3. J. J. Zou, X. Zhang, J. Kong, and L. Wang, Hydrogenation of Dicyclopentadiene over amorphous nickel alloy catalyst SRNA-4, Fuel, 87, 3655-3659 (2008). https://doi.org/10.1016/j.fuel.2008.07.006
  4. R. V. Norton and D. H. Fisher, High density fuel compositions, US Patent 4,286,109 (1981).
  5. C. A. Cohen and C. W. Muessig, Jet and rocket fuel, US Patent 3,381,046 (1968).
  6. B. H. Jeong, J. S. Han, S. W. Ko, J. H. Lee, and B. J. Lee, Deactivation and reuse of cesium-containing heteropolyacid for the isomerization of THDCPD, J. Ind. Eng. Chem., 13, 310-313 (2007).
  7. R. V. Norton and D. H. Fisher, Method for preparing high density liquid hydrocarbon fuels, US Patent 4,355,194 (1982).
  8. E. J. Janoski, A. Schneider, and R. E. Ware, Process for isomerization of tetrahydrodimethyldicyclopentadiene, US Patent 4,288,644 (1981).
  9. R. V. Norton and S. C. Howe, Production of high energy fuel, US Patent 4,270,014 (1981).
  10. A. Schneider, R. E. Ware, and E. J. Janoski, Isomerization of endo- tetrahydrodicyclopentadiene to a missile fuel diluent, US Patent 4,086,284 (1978).
  11. A. G. Olah and O. Farooq, Superacid-catalyzed isomerization of endo-to exo-trimethylenenorbornane (Tetrahydrodicyclopentadiene) and to adamantane, J. Org. Chem., 51, 5410-5413 (1986). https://doi.org/10.1021/jo00376a067
  12. E. Xing, Z. Mi, L. Wang, C. Xin, and X. Zhang, Endo- to exo-isomerization of tetrahydrodicyclopentadiene catalyzed by commercially available zeolites, J. Mol. Catal. A: Chem., 231, 161-167 (2005). https://doi.org/10.1016/j.molcata.2005.01.015
  13. Z. Xiong, Z. Mi, and X. Zhang, A Pd-B/$\gamma$-$Al_2O_3$ amorphous alloy catalyst for hydrogenation of tricyclopentadiene to tetrahydrotricyclopentadiene, Catal. Commun., 8, 571-575 (2007). https://doi.org/10.1016/j.catcom.2006.08.009
  14. G. C. Lau and W. F. Maier, Polycyclic hydrocarbon rearrangements in zeolites. A mechanistic study, Langmuir, 3, 164-173 (1987). https://doi.org/10.1021/la00074a004
  15. M. Navratilova and K. Sporka, Synthesis of adamantane on commercially available zeolitic catalysts, Appl. Catal. A: Gen., 203, 127-132 (2000). https://doi.org/10.1016/S0926-860X(00)00477-4
  16. C. Sun and G. Li, Vapor-phase isomerization of endo-tetrahydrodicyclopentadiene to its exo isomer over zeolite catalysts, Appl. Catal. A: Gen., 402, 196-200 (2011). https://doi.org/10.1016/j.apcata.2011.06.008
  17. E. Xing, X. Zhang, L. Wang, and Z. Mi, Catal. Molecular dimensions of tetrahydrodicyclopentadiene isomers and shape selectivity of zeolitic catalysts, Catal. Commun., 6, 737-741 (2005). https://doi.org/10.1016/j.catcom.2005.07.010
  18. B. H. Jeong, J. S. Han, S. B. Kim, C. H. Kang, and B. J. Lee, Study on the isomerization reaction of tetrahydrodicyclopentadiene, tetrahydrodi (methylcyclopentadiene) using heteropolyacid catlaysts, J. Korean Ind. Eng. Chem., 18, 36-40 (2007).
  19. M. G. Sibi, B. Singh, R. Kumar, C. Pendem, and A. K. Sinha, Single-step catalytic liquid-phase hydroconversion of DCPD into high energy density fuel exo-THDCPD, Green Chem., 14, 976-983 (2012). https://doi.org/10.1039/c2gc16264d

Cited by

  1. Ratio on 2-butanol Dehydration over HY Zeolite Catalysts vol.53, pp.1, 2015, https://doi.org/10.9713/kcer.2015.53.1.116
  2. Synthesis of Tricyclopentadiene Using Ionic Liquid Supported Mesoporous Silica Catalysts vol.27, pp.2, 2016, https://doi.org/10.14478/ace.2016.1010