DOI QR코드

DOI QR Code

Effect of Thermal History on the Physical Properties of Nylon66

열 이력이 나일론66의 물성에 미치는 영향

  • Lee, Bom Yi (Major in Polymer Science and Engineering, Kongju National University) ;
  • Jo, Chan Woo (Major in Polymer Science and Engineering, Kongju National University) ;
  • Shim, Chang Up (Technical Research Center, ENA Industry) ;
  • Lim, Su Jung (Technical Research Center, ENA Industry) ;
  • Kim, Youn Cheol (Major in Polymer Science and Engineering, Kongju National University)
  • 이봄이 (공주대학교 신소재공학부 고분자공학전공) ;
  • 조찬우 (공주대학교 신소재공학부 고분자공학전공) ;
  • 심창업 (공주대학교 산학협력단 에나인더스트리 기술연구소) ;
  • 임수정 (공주대학교 산학협력단 에나인더스트리 기술연구소) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • Received : 2013.11.14
  • Accepted : 2013.12.20
  • Published : 2014.02.10

Abstract

Nylon66 extrudates as a function of the extrusion number were prepared by a twin screw extruder. Chemical structures, thermal properties, melt index, crystal structures, mechanical properties such as the tensile strength, elongation at break and impact strength, and rheological property were measured by FT-IR, $^1H$-NMR, melt indexer, DSC, TGA, XRD, universal tensile tester, Izod impact tester, and rheometer. FT-IR and $^1H$-NMR characterizations indicated that the number of extrusions did not affect the chemical structure. The decrease in the molecular weight was checked by the melt index of extrudates. There were no effects of the thermal history on the melting and degradation temperature. The tensile and impact strength and modulus were found to be similar, regardless of the number of extrusions, but the elongation decreased significantly. The complex viscosity of extrudates at low frequencies decreased with the extrusion number. No structural changes after extrusion were confirmed from the fact that there was no change in the slope and shape of G'-G" plot.

이축압출기(twin screw extruder)를 이용하여 나일론66 압출시료를 압출횟수에 따라 제조하였다. 압출횟수에 따른 화학구조, 열적 특성, 용융지수, 결정구조, 인장특성, 충격특성 및 유변학적 특성을 FT-IR, $^1H$-NMR 용융지수 측정기, DSC, TGA, XRD, 만능시험기, Izod 시험기, 그리고 유변물성측정기를 이용하여 분석하였다. FT-IR과 $^1H$-NMR을 이용하여 확인한 결과 압출시편에서의 화학구조 변화는 확인되지 않았다. 압출횟수에 따라 분자량이 감소하는 것을 용융지수를 이용하여 확인하였으며, 열 이력이 용융온도와 분해온도에는 큰 영향을 주지 않는 것을 DSC와 TGA를 이용하여 확인하였다. 압출시편의 기계적 특성 평가결과 인장강도, 충격강도 및 탄성률은 유사한 값을 보이나, 신율의 경우 큰 폭으로 감소하였다. 유변학적 특성 측정결과 낮은 주파수에서의 복합점도 값이 압출 횟수에 따라 감소하였다. 압출시편의 G'-G" 곡선의 기울기나 형태가 변하지 않는 것으로부터 압출시편에 가교와 같은 구조변화가 크게 나타나지 않음을 알 수 있었다.

Keywords

References

  1. C. H. Hong, B. W. Nam, and D. S. Han, The present situation and prediction of biomass-based nylon, Polymer Science and Technology, 21, 321-325 (2010).
  2. K. S. Kim, K. M. Bae, S. Y. Oh, M. K. Seo, C. G. Kang, and S. J. Park, Trend of carbon fiber-reinforced composites for lightweight vehicles, Elastomers and Composites, 47, 65-74 (2012). https://doi.org/10.7473/EC.2012.47.1.065
  3. B. J. Holland and J. N. Hay, Thermal degradation of nylon polymers, Polym. Int., 49, 943-948 (2000). https://doi.org/10.1002/1097-0126(200009)49:9<943::AID-PI400>3.0.CO;2-5
  4. C. H. Do, E. M. Pearce, and B. J. Bulkin, FT-IR spectroscopic study on the thermal and thermal oxidative degradation of nylons, J. of Polym. Sci.: Part A: Polym. Chem., 25, 2409-2424 (1987).
  5. U. S. Ishiaku, H. Hamada, M. Mizoguchi, W. S. Chow, and Z. A. Mohd Ishak, The effect of ambient moisture and temperature conditions on the mechanical properties of glass fiber/carbon fiber/ nylon6 sandwich hybrid composites consisting of Skin-Core morphologies, Polym. Composites, 52-59 (2005).
  6. A. Valle's-Lluch, W. Camacho, A. Ribes-Greus, and S. Karlsson, Influence of water on the viscoelastic behavior of recycled nylon6,6, J. Appl. Polym. Sci., 85, 2211-2218 (2002). https://doi.org/10.1002/app.10838
  7. R. P. Singh, S. M. Desai, and G. Pathak, Thermal decomposition kinetics of photooxidized nylon66, J. Appl. Polym. Sci., 87, 2146-2150 (2003). https://doi.org/10.1002/app.11589
  8. M. A. Schaffer, K. B. McAuley, E. K. Marchildon, and M. F. Cunningham, Thermal degradation kinetics of nylon66 : experimental study and comparison with model predictions, Macromol. React. Eng., 1, 563-577 (2007). https://doi.org/10.1002/mren.200700020
  9. S. V. Levchik, E. D Weil, and M. Lewin, Thermal decomposition of aliphatic nylons, Polym. Int., 48, 532-557 (1999). https://doi.org/10.1002/(SICI)1097-0126(199907)48:7<532::AID-PI214>3.0.CO;2-R
  10. Z. A. Alothman, M. M. Alam, and M. Naushad, Heavy toxic metal ion exchange kinetics : Validation of ion exchange process on composite cation exchanger nylon6,6 Zr(IV) phosphate, J. Indus. Eng. Chem., 19, 956-960 (2013). https://doi.org/10.1016/j.jiec.2012.11.016
  11. M. J. Lozano-Gonzalez, M. T. Rodriguez-Hernandez, E. A. G.-D. L. Santos, and J. V. Olmos, Physical-mechanical properties and morphological study on nylon6 recycling by injection molding, J. Appli. Polym. Sci., 76, 851-858 (2000). https://doi.org/10.1002/(SICI)1097-4628(20000509)76:6<851::AID-APP11>3.0.CO;2-D
  12. H. Mitomo, K. Nakazato, and I. Kuriyama, Stepwise lamellar thickening of nylon66 crystal by annealing in glycerol, J. Polym. Sci., Polym. Phys. Ed., 15, 915-919 (1977). https://doi.org/10.1002/pol.1977.180150514
  13. H. Mitomo, Estimation of Lamellar thickness of nylon66 single crystal by hydrolysis and gel permeation chromatography, J. Polym. Sci., Polym. Phys., 26, 467-472 (1988). https://doi.org/10.1002/polb.1988.090260220
  14. Y. Li, D. Yan, and E. Zhou, In situ Fourier transform IR spectroscopy and variable-temperature wide-angle X-ray diffraction studies on the crystalline transformation of melt-crystallized nylon1212, Colloid Polym. Sci., 280, 124-129 (2002). https://doi.org/10.1007/s003960100571
  15. E. C. Botelho, C. L. Nogueira, and M. C. Rezende, Monitoring of nylon6,6/carbon fiber composites processing by X-ray diffraction and thermal analysis, J. Appl. Polym. Sci., 86, 3114-3119 (2002). https://doi.org/10.1002/app.11335
  16. R. K. Ayyer and A. I. Leonov, Comparative rheological studies of polyamide-6 and its low loaded nanocomposite based on layered silicates, Rheol Acta, 43, 283-292 (2004). https://doi.org/10.1007/s00397-003-0343-6
  17. G. Xu, G. Chen, Y. Ma, Y. Ke, and M. Han, Rheology of a low-filled polyamide6/montmorillonite nanocomposite, J. Appl. Poly. Sci., 108, 1501-1505 (2008). https://doi.org/10.1002/app.27750
  18. B. Schartel, P. Potschke, U. Knoll, and M. Abdel-Goad, Fire behaviour of polyamide6/multiwall carbon nanotube nanocomposites, Euro. Polym. J., 41, 1061-1070 (2005). https://doi.org/10.1016/j.eurpolymj.2004.11.023
  19. L. Zonder, A. Ophir, S. Kenig, and S. McCarthy, The effect of carbon nanotubes on the rheology and electrical resistivity of polyamide12/ high density polyethylene blends, Polymer, 52, 5085-5091 (2011). https://doi.org/10.1016/j.polymer.2011.08.048
  20. K. H. Yoon, J. W. Lee, and Y. C. Kim, Rheological properties and foaming behaviors of modified PP/nano-filler composites, Polymer (Korea), 37, 494-499 (2013). https://doi.org/10.7317/pk.2013.37.4.494