DOI QR코드

DOI QR Code

Design of PID Controller with Adaptive Neural Network Compensator for Formation Control of Mobile Robots

이동 로봇의 군집 제어를 위한 PID 제어기의 적응 신경 회로망 보상기 설계

  • Kim, Yong-Baek (Automation Research Dept., Industrial Technology Institute, Hyundai Heavy Industries) ;
  • Park, Jin-Hyun (Dept. of Mechatronics Eng., Kyeognam National University of Science and Technology) ;
  • Choi, Young-Kiu (Department of Electrical Engineering, Pusan National University)
  • Received : 2013.12.03
  • Accepted : 2014.01.13
  • Published : 2014.03.31

Abstract

In this paper, a PID controller with adaptive neural network compensator is proposed to control the formations of mobile robot. The control system is composed of a kinematic controller based on the leader-following robot and dynamic controller for considering the dynamics of the mobile robot. The dynamic controller is constituted by a PID controller and the adaptive neural network compensator for improving the performance and compensating the change in dynamic characteristics. Simulation results show the performance of the PID controller and the neural network compensator for the circular trajectory and linear trajectory. And it is verified that by improving the performance of a PID controller via the adaptive neural network compensator, the following robot's tracking performance is improved.

본 논문에서는 이동 로봇의 군집 제어를 위해 실시간 적응 신경 회로망 보상기를 갖는 PID 제어기를 제안한다. 전체 제어 시스템은 선도-추종 로봇 접근법에 의한 기구학 제어기와 이동 로봇의 동역학을 고려한 동적 제어기로 구성되어 있다. 동적 제어기는 PID 제어기에 동특성 변화를 보상하고 성능을 개선시키기 위해 실시간 학습 기능을 가진 신경 회로망 보상기로 구성하였다. 모의실험을 통해 원형 궤적과 직선 궤적에 대해 PID 제어기와 신경 회로망 보상기의 성능을 비교하였다. 이를 통해 실시간 학습 기능을 가진 신경 회로망 보상기가 PID 제어기의 성능을 향상시킴으로써 군집 제어에서 추종 로봇의 추종 성능을 향상시키는 것을 확인하였다.

Keywords

References

  1. Y. U. Cao, A. S. Fukunaga and A. B. Kahang, "Cooperative mobile robotics: antecedents and directions," Auton. Robots, vol. 4, no. 1, pp. 7-27, Mar. 1997. https://doi.org/10.1023/A:1008855018923
  2. J. P. Desai, J. Ostrowski and V. Kumar, "Modeling and control of formations of nonholonomic mobile robots," IEEE Trans. Robotics and Automations, vol. 17, no. 6, pp. 905-908, Dec 2001. https://doi.org/10.1109/70.976023
  3. A. K. Das et al., "A vision-based formation control framework," IEEE Trans. on Robotics and Automaton, vol.18, no. 5, pp. 813-825, Oct 2002. https://doi.org/10.1109/TRA.2002.803463
  4. J. Shao, G. Xie and L. Wang, "Leader-following formation control of multiple mobile vehicles," IET Control Theory and Applications, vol. 1, no. 2, pp. 545-552, Mar 2007. https://doi.org/10.1049/iet-cta:20050371
  5. Y. Q. Chen and Z. Wang, "Formation control: a review and a new consideration," in Proceeding of the IEEE International Conference on Intelligent Robots and systems, New York: NY, pp. 3181-3186, Aug. 2005.
  6. E. R. Fierro and F. L. Lewis, "Control of a nonholonomic mobile robot using neural networks," IEEE Trans on Neural Networks, vol. 9, no. 4, July 1998.
  7. Y. K. Choi, M. J. Lee and S. S. Kim, "Design and Implementation of an adaptive neural network compensator for control systems," IEEE Trans. on Industrial Electronics, vol. 48, no. 2, April 2001.

Cited by

  1. 신경회로망 PID 제어기를 이용한 이동로봇의 군집제어 vol.18, pp.8, 2014, https://doi.org/10.6109/jkiice.2014.18.8.1811