DOI QR코드

DOI QR Code

Design of C-shape Sharp Turn Trajectory using Neural Networks for Fish Robot

신경회로망을 사용한 물고기 로봇의 빠른 방향 전환 궤적 설계

  • Park, Hee-Moon (Department of Mechatronics Engineering, Kyeognam National University of Science and Technology) ;
  • Park, Jin-Hyun (Department of Mechatronics Engineering, Kyeognam National University of Science and Technology)
  • Received : 2013.12.05
  • Accepted : 2014.01.20
  • Published : 2014.03.31

Abstract

In this study, in order to improve and optimize the performance of the turning mechanism for a fish robot in the fluid, we propose the tail joint trajectories using neural networks to mimic the CST(C-shape Sharp Turn) patterns of a real fish which is optimized in the natural environment. In order to mimic the CST patterns of a fish, we convert the sequential recording CST patterns into the coordinate data, and change the numerical coordinate data into a functions. We change the motion functions to the relative joint angles which is adapted to suit robot's shape and data. However, these relative joint trajectories obtained by the sequential recording of the carp have low-precision. It is difficult to apply to the control of a fish robot. Therefore, the relative joint trajectories are interpolated using neural networks with superior generalization ability and applied to the fish robot. we have found that the proposed method using neural networks is superior to ones using high-order polynomial equation through the computer simulations.

본 연구에서는 유체 속에서의 로봇의 방향전환 메커니즘의 성능을 개선하고 최적화하기 위하여 물 속 자연환경에 최적화되어 있는 물고기의 CST(CST:C-shape sharp turn) 패턴을 모방하여 물고기 로봇의 꼬리 관절 궤적을 신경회로망(neural network)을 사용하여 제안하였다. 물고기의 CST 패턴을 모방하기 위해 CST 패턴을 순차적으로 기록한 정보를 수치적으로 변환하여 좌표 데이터를 생성하고 함수화하였다. 함수화된 모션 함수를 물고기 로봇의 상대 관절각으로 변환하였으나, 구해진 상대 관절 궤적은 잉어의 순차적 기록에 의해 구해진 각도이므로 분해능이 떨어져 실제 물고기 로봇의 제어에 적용하기 어렵다. 그러므로 상대 관절 궤적을 일반화 기능이 뛰어난 신경회로망을 사용하여 보간하고 물고기 로봇에 적용하였다. 모의실험을 통하여 신경회로망을 이용한 상대 관절 궤적 함수가 고차의 다항식 궤적 함수에 비하여 물고기 로봇의 CST 모션에 더 좋은 성능을 나타냄을 확인하였다.

Keywords

References

  1. Jinding Liu and Huosheng hu, "Biological Inspiration : From Carangiform Fish to Multi-Joint Robotic Fish," Journal of Bionic Engineering, Vol.7, pp. 35-48, 2010. https://doi.org/10.1016/S1672-6529(09)60184-0
  2. Lighthill M J, "Note on the swimming of slender fish," Journal of Fluid Mechanics, Vol.9, pp. 305-317, 1960. https://doi.org/10.1017/S0022112060001110
  3. Liu J D, Dukes I and Hu H S, "Novel mechatronics design for a robotic fish," IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2077-2082. 2005.
  4. Liu J D and Hu H S, "A 3D simulator for autonomous robotic fish," International Journal of Automation and Computing, Vol.1, pp. 42-55. 2004. https://doi.org/10.1007/s11633-004-0042-5
  5. Spierts I L Y and Leeuwen J L V, "Kinematics and muscle dynamics of C- and S-starts of carp (Cyprinus carpio L.)," Journal of Experimental Biology, Vol.202, pp. 393-406, 1999.
  6. Liu J D and Hu H S, "Mimicry of Sharp Turning Behaviours in a Robotic Fish," Proceedings of the 2005 IEEE International Conference on Robotics and Automation, 2005.
  7. Jin-Hyun Park, Tae-Hwan Lee, Young-Kiu Choi, "A study on the C-shape Sharp Turn of fish robot according to biological mimic," J. Korea Inst. Info.Ccom. Eng., Vol.15, No. 12, pp. 2626-2631, 2011. https://doi.org/10.6109/jkiice.2011.15.12.2626
  8. Biohydrodynamics MATLAB Toolbox, A. Munnier and B. Pincon, http://bht.gforge.inria.fr/