DOI QR코드

DOI QR Code

Determining of Weighting Factor for Two-Point Interpolation Filters

2-점 보간법 필터에서의 가중치 결정

  • Ha, Mi-Ryeong (Department of Media Software, Sangmyung University) ;
  • Yoo, Hoon (Department of Media Software, Sangmyung University)
  • Received : 2013.12.26
  • Accepted : 2014.02.05
  • Published : 2014.03.31

Abstract

This paper describes a determining method of weighting factors for two-point interpolation filters. The interpolation filters is implemented by applying modifying functions to the linear interpolation. Here, there is a problem of determining weights when modifying functions being engaged. The previous method determined the weights by imposing c1-continuity on the interpolation kernels. However, this approach is unable to use the property of individual modifying functions. In this paper, on the basis of spectral analyses of the modifying functions and image signals, we provide a determination method by experimental results. Thus, many experiments are carried out to do so. The results indicate that different weights are required for different modifying functions and also the proposed method outperforms than the previous method.

본 논문은 2-점 보간 필터에 대한 효과적인 가중치 설정에 대한 방법을 제안한다. 2-점 보간법은 선형 보간 필터에 변형 함수를 적용함으로써 구현된다. 여기서 변형 함수를 적용할 때 적절한 가중치를 설정해야하는 문제가 발생한다. 기존 방법에서는 보간 커널 함수의 c1-연속성을 활용하여 설정하였다. 하지만 이러한 설정 방법은 변형 함수의 특성을 활용하지 못하는 부분이 존재한다. 논문에서는 변형 함수와 영상 신호에 대한 주파수 해석을 바탕으로 실험적으로 가중치 결정 기법을 제공한다. 이를 확인하기 위해서 다양한 실험을 진행한다. 실험결과는 변형 함수에 따라서 서로 다른 최적인 가중치가 결정됨을 확인할 수 있고 이전 방법보다 더 우수한 성능을 보여주는 것을 확인해 준다.

Keywords

References

  1. I. N. Bankman, Handbook of medical imaging, processing and analysis, academic new york, pp. 393-420, 2000.
  2. H. Yoo, S. P. Lee and B. C. Jang, "Design of two-point interpolation filters by modifying linear interpolation kernel," Far East Journal of Electronics and Communications, vol. 10, no.2, pp. 131 - 139, 2013.
  3. R. G. Keys, "Cubic convolution interpolation for digital image processing," IEEE Trans. Acoust., Speech, Signal Process., vol. 29, pp. 1153-1160, Dec. 1981. https://doi.org/10.1109/TASSP.1981.1163711
  4. T. M. Lehmann, C. Gonner, and K. Spitzer, "Survey: interpolation methods in medical image processing," IEEE Trans. Medical Imaging, vol. 18, pp. 1049-1075, Nov. 1999. https://doi.org/10.1109/42.816070
  5. D. Fu and A. N. Wilson Jr., "Trigonometric polynomial interpolation for timing recovery," IEEE Trans. Circuits and Systems-I: Regular Papers, vol. 52, pp. 338-349, Feb. 2005. https://doi.org/10.1109/TCSI.2004.841573
  6. M. Unser, "Splines: A perfect fit for signal and image processing," IEEE Signal Process. Mag., vol. 16, pp. 22-38, Nov. 1999. https://doi.org/10.1109/79.799930
  7. T. Blu, P. Thevenaz, and M. Unser, "Linear interpolation revitalized," IEEE Trans. Image Processing, vol. 13, no. 5, pp. 710-719, May 2004. https://doi.org/10.1109/TIP.2004.826093
  8. D. Y. Park and H. Yoo, "Shifted linear interpolation with an image-dependent parameter," J. Korea Inst. Inf. Commun. Eng.. vol. 17, pp. 399-406, Oct. 2013.
  9. X. Li and M. Orchard, "New edge-directed interpolation," IEEE Trans. Image Process., vol. 10, no. 10, pp. 1521-1527, Oct. 2001. https://doi.org/10.1109/83.951537
  10. J. K. Han and S. U. Baek, "Parametric cubic convolution scaler for enlargement and reduction of image," IEEE Trans. Consumer Electron., vol. 46, no. 2, pp. 247-256, May. 2000. https://doi.org/10.1109/30.846654
  11. H. Yoo, "Closed-form least-squares technique for adaptive linear image interpolation," IET Electron. Lett., vol. 43, pp. 210-212, Feb. 2007. https://doi.org/10.1049/el:20073606
  12. B. D. Choi and H. Yoo, "Design of Piecewise Weighted Linear Interpolation Based on Even-Odd Decomposition and Its Application to Image Resizing," IEEE Trans. Consumer Electron., vol. 55, no. 4, pp. 2280-2286, Nov. 2009. https://doi.org/10.1109/TCE.2009.5373799
  13. C. Hughes, P. Denny, M. Glavin, and E. Jones, "Equidistant Fish-Eye Calibration and Rectification by Vanishing Point Extraction," IEEE Trans. Patt. Anal. Mach. Intel., vol. 32, no.12, pp. 2289 - 2296, Dec. 2010. https://doi.org/10.1109/TPAMI.2010.159
  14. M. Tomasi, M. Vanegas, F. Barranco, J. Diaz, and E. Ros, "Real-Time Architecture for a Robust Multi-Scale Stereo Engine on fpga," IEEE Trans. VLSI Syst., vol. 20, no.12, pp. 2208 - 2219, Dec. 2012. https://doi.org/10.1109/TVLSI.2011.2172007

Cited by

  1. 디인터레이싱을 위한 방향지향 보간법의 개선 vol.18, pp.9, 2014, https://doi.org/10.6109/jkiice.2014.18.9.2209