DOI QR코드

DOI QR Code

A Clarification of the Cauchy Distribution

  • Received : 2014.01.16
  • Accepted : 2014.02.17
  • Published : 2014.03.31

Abstract

We define a multivariate Cauchy distribution using a probability density function; subsequently, a Ferguson's definition of a multivariate Cauchy distribution can be viewed as a characterization theorem using the characteristic function approach. To clarify this characterization theorem, we construct two dependent Cauchy random variables, but their sum is not Cauchy distributed. In doing so the proofs depend on the characteristic function, but we use the cumulative distribution function to obtain the exact density of their sum. The derivation methods are relatively straightforward and appropriate for graduate level statistics theory courses.

Keywords

References

  1. Azzalini, A. and Capitanio, A. (1999). Statistical applications of the multivariate skew-normal distri-bution, Journal of the Royal Statistical Society, Series B, 61, 579-602. https://doi.org/10.1111/1467-9868.00194
  2. Blyth, C. R. (1986). Convolutions of Cauchy distributions, The American Mathematical Monthly, 93, 645-647. https://doi.org/10.2307/2322331
  3. Casella, G. and Berger, R. L. (2002). Statistical Inference, 2nd, Duxbury, CA.
  4. Crovella, M. E., Taqqu, M. S. and Bestavros, A. (1998). A Practical Guide to Heavy Tails: Statistical Techniques and Applications, Adler, R., Feldman, R. and Taqqu, M., editors, Birkhauser, Boston.
  5. Ferguson, T. S. (1962). A representation of the symmetric bivariate Cauchy distribution, The Annals of Mathematical Statistics, 33, 1256-1266. https://doi.org/10.1214/aoms/1177704357
  6. Kotz, S. and Nadarajah, S. (2004). Multivariate t Distributions and Their Application, Cambridge University Press, Cambridge.
  7. Melnick, E. L. and Tenenbein, A. (1982). Misspecifications of the normal distribution, The American Statistician, 36, 372-373.
  8. Novosyolov, A. (2006). The Sum of Dependent Normal Variables may be not Normal, Technical report, Institute of computational modeling SB RAS.
  9. Park, S. Y. and Bera, A. K. (2009). Maximum entropy autoregressive conditional heteroskedasticity model, Journal of Econometrics, 150, 219-230. https://doi.org/10.1016/j.jeconom.2008.12.014
  10. Romano, J. P. and Siegel, A. F. (1986). Counterexamples in Probability and Statistics, Wadsworth & Brooks/Cole Advanced Books & Software, CA.
  11. Zhang, J. (2010). A highly efficient L-estimator for the location parameter of the Cauchy distribution, Computational Statistics, 25, 97-105 https://doi.org/10.1007/s00180-009-0163-y

Cited by

  1. Solving Systems of Random Quadratic Equations via Truncated Amplitude Flow vol.64, pp.2, 2018, https://doi.org/10.1109/TIT.2017.2756858