DOI QR코드

DOI QR Code

Prediction of Physical Characteristics of Cement-Admixed Clay Ground

점토-시멘트 혼합 지반의 물리적 특성 예측

  • 박민철 ((주)한국건설정보연구원) ;
  • 전제성 (인덕대학교 건설정보공학과) ;
  • 정상국 (송원대학교 토목공학과) ;
  • 이송 (서울시립대학교 토목공학과)
  • Received : 2013.11.13
  • Accepted : 2013.12.29
  • Published : 2014.04.01

Abstract

Physical characteristics of cement-admixed clay such as water content, specific gravity, unit weight and void ratio are main factors for strength, compressibility and prediction of consolidation behavior. In the past, the physical characteristics of admixed soils could be understanded through complex laboratory tests and field survey after construction. In this study, the tests were performed with conditions such as clay water contents 0%-170%, cement contents 5%-25% and curing period 3-90days after that analyzed for changes which are water content, specific gravity unit weight and void ratio of admixed soils. A prediction of properties through mechanical relationships with clay in situ water content, cement content and curing period could be proposed using the test results. The prediction equation of void ratio of admixed soils was derived using void ratio equation in geotechnical engineering and compared with test results of bangkok clay and then this study could be verified.

점토-시멘트 혼합토의 물리적 특성인 함수비, 비중, 단위중량과 간극비 등은 혼합토의 강도, 압축성, 압밀거동 예측 등에 적용되는 주요한 인자이다. 기존에는 혼합토의 물리적 특성을 복잡한 실내시험 및 시공 후 확인조사를 통해 이루어 졌다. 본 연구는 점토 함수비 90~170%, 시멘트 함유율 5~25%와 재령기간은 3~90일 조건으로 실내시험을 수행하였으며, 양생 후 혼합토 함수비, 비중, 단위중량과 간극비 등에 대한 변화를 분석하였다. 시험결과를 이용하여 원지반 점토 함수비, 시멘트 함유율과 재령기간 등의 역학적 관계를 바탕으로 혼합토의 함수비, 비중과 단위중량에 관한 물성 예측식을 제안하였다. 혼합토의 물성 예측식을 지반공학 분야에서 일반적으로 사용하는 간극비 산출식에 대입하여 혼합토의 간극비 예측식을 도출하였으며, 방콕 점토를 대상으로 간극비에 대한 실험결과와 본 연구에서 제안한 예측식을 검증하였다.

Keywords

References

  1. Broms, B. B. (1986). "Stabilization of soft clay with lime and cement columns in Southeast Asia." Applied Research Project RP10/83, Nanyang Technological Institute, Singapore (in Singapore).
  2. Horpibulsuk, S., Miura, N. and Nagaraj, T. S. (2003). "Assessment of strength development in cement-admixed high water content clays with abrams' law as a basis." Geotechnique 53, No. 4, pp. 439-444. https://doi.org/10.1680/geot.2003.53.4.439
  3. Kezdi, A. (1979). "Stabilization with lime cement in geotechnical engineering." Elsevier Scientific Publication Co, Amsterdam, Vol. 9, pp. 163-174.
  4. KS F 2518 (2005). Standard test method for absolption and bulk specific gravity of rock, pp. 1-4 (in Korean).
  5. Lorenzo, G. A. and Bergado, D. T. (2004). "Fundamental parameters of cement-admixed clay." Journal of Geotechnical and Geoenvironmental Engineering, Vol. 130, No. 10, pp. 1042-1050. https://doi.org/10.1061/(ASCE)1090-0241(2004)130:10(1042)
  6. Lorenzo, G. A. and Bergado, D. T. (2006). "Fundamental characteristics of cement-admixed clay in deep mixing." Journal of Materials in Civil Engineering, Vol. 18, No. 2, pp. 161-174. https://doi.org/10.1061/(ASCE)0899-1561(2006)18:2(161)
  7. Miura, N., Horpibulsok, S. and Nagaraj, T. S. (2001). "Engineering behavior of cement stabilized clay at high water content." Soils and Foundations, Vol. 41, No. 5, pp. 33-45. https://doi.org/10.3208/sandf.41.5_33
  8. Petchgate, K., Sukmongkol, W. and Voottipruex, P. (2001). "Effect of height and diameter ratio on the strength of cement stabilized soft bangkok clay." Geotech. Eng, Vol. 31, No. 3, pp. 227-239.
  9. Uddin, K., Balasubramaniam, A. S. and Bergado, D. T. (1997). "Engineering behavior of cement-treated bangkok soft clay." Geotech. Eng., Vol. 28, No. 1, pp. 89-119.
  10. Watabe, Y., Tsuchida, T., Furuno, T. and Yuasa, H. (2000). "Mechanical characteristics of a cement treated dredge soil utilized for waste reclamation landfill." Proc. Coastal Geotechnical Engineering in Practice, pp. 739-745.
  11. Yin, J. H. (2001). "Stress-strain-strength characteristics of soft hong kong marine deposits without or with cement treatment." Lowland Technol, Vol. 3, No. 1, pp. 1-13.