DOI QR코드

DOI QR Code

Antioxidant activities of hot water extract of Syneilesis palmata root and aerial part

우산나물 뿌리와 지상부 열수 추출물의 항산화 활성

  • Lee, Yang-Suk (Department of Herbal Biotechnology, Daegu Haany University) ;
  • Kim, Nam-Woo (Department of Herbal Biotechnology, Daegu Haany University)
  • 이양숙 (대구한의대학교 한약자원학과) ;
  • 김남우 (대구한의대학교 한약자원학과)
  • Received : 2013.08.08
  • Accepted : 2014.01.20
  • Published : 2014.02.28

Abstract

This study was performed in order to investigate the antioxidant properties of hot water extract from the root and aerial part of the Syneilesis palmata in respect to its potential use as food, cosmetics material, or medicinal resource. The results showed that the S. palmata root hot water extract (RHW) possessed a higher content of total flavonoid compounds (4.58 mg/g) and total polyphenol compounds (59.11 mg/g). The SOD-like activities of the RHW and APHW were 23.74% and 21.61%, respectively, at a concentration $2,000{\mu}g/mL$. In the nitrite scavenging ability of a $2,000{\mu}g/mL$ concentration, the RHW showed 63.06% (pH 1.2) and 47.16% (pH 3.0). The $IC_{50}$ values of the nitrite scavenging abilities were $99.93{\mu}g/mL$ (ascorbic acid), $1,150.85{\mu}g/mL$ (RHW), and $1,610.25{\mu}g/mL$ (APHW). The $IC_{50}$ values of DPPH free radical scavenging abilities were $99.87{\mu}g/mL$ (RHW) and $118.29{\mu}g/mL$ (APHW). The inhibition values ($IC_{50}$) of xanthine oxidase were $139.62{\mu}g/mL$ (RHW) and $111.11{\mu}g/mL$ (APHW). In all of the experiments, the S. palmata root hot water extracts have higher activities than the aerial hot water extract, except for the xanthine oxidase inhibitory activity. These results suggest that the S. palmata is a potentially useful antioxidant source for the development of functional nutraceuticals, cosmetics and medicine.

본 연구는 식품, 화장품 및 의약품 소재로 활용 가능성에 대해 알아보고자 우산나물 뿌리와 지상부에 대한 항산화 활성을 측정하였다. 우산나물 뿌리 열수 추출물(RHW)은 4.58 mg/g의 플라보노이드와 59.11 mg/g의 폴리페놀 화합물을 함유하였으며, 지상부 열수 추출물(APHW)은 각각 2.79 mg/g과 48.01 mg/g을 함유하였다. SOD 유사활성능은 RHW에서 23.74%, APHW는 21.61%를 나타내었다. 아질산염 소거능은 $2,000{\mu}g/mL$에서 RHW는 pH 1.2에서 63.06%였으며, pH 3.0에서는 47.16%로 아질산염을 50% 소거하는 $IC_{50}$은 ascorbic acid $99.93{\mu}g/mL$, RHW $1,150.85{\mu}g/mL$, 그리고 APHW에서는 $1,610.25{\mu}g/mL$이었다. DPPH free radical 소거능에 대한 $IC_{50}$은 RHW $99.87{\mu}g/mL$, APHW $118.29{\mu}g/mL$를 나타내었다. Xanthine oxidase에 대한 $IC_{50}$은 RHW에서 $139.62{\mu}g/mL$였으며, APHW는 $111.11{\mu}g/mL$으로 xanthine oxidase 저해능은 우산나물 지상부의 열수추출물인 APHW가 뿌리 열수 추출물인 RHW보다 좀더 낮은 농도에서 50%의 활성을 나타내었으나, 플라보노이드와 폴리페놀 화합물 함량, SOD 유사활성, 아질산염 소거 및 DPPH free radical 소거능은 RHW가 APHW보다 높은 활성을 나타내었다. 이상의 결과 우산나물은 기능성 식품과 화장품 그리고 의약품 개발을 위한 항산화 소재로 활용할 수 있을 것으로 판단된다.

Keywords

References

  1. Torel J, Cillard J, Cillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem, 2, 383-385
  2. Halliwell B, Gutteridge JM (1984) Oxygen toxicity, oxygen radicals, transition metals and disease. Biochem J, 219, 1-14
  3. Lipworth L, Martinez ME, Angell J, Hsien CC, Trichopoulos D (1997) Olive oil and human cancer; an assessment of evidence. Prev Med, 26, 181-190 https://doi.org/10.1006/pmed.1996.9977
  4. Bashan N, Kovsan J, Kachko I, Ovadia H, Rudoch A (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev, 89, 27-71 https://doi.org/10.1152/physrev.00014.2008
  5. Diplock AT, Charleux JL, Crozier-Willi G, Kok FJ, Rice-Evan C, Roberfroid M (1998) Functional food science and defence against reactive oxidative species. Brit J Nutr, 80, 77-112 https://doi.org/10.1079/BJN19980106
  6. Hu FB (2000) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol, 13, 3-9
  7. Lee YN (1998) Flora of Korea 3th edition. Kyohaksa, Seoul, Korea p 814
  8. An DK (1998) Illustrated book of Korean medicinal herbs. Kyohaksa, Seoul, Korea p 347
  9. Kim H, Song MJ, Potter D (2006) Medicinal efficacy of plants utilized as temple food in traditional Korean Buddhism. J Ethnopharm, 104, 32-46 https://doi.org/10.1016/j.jep.2005.08.041
  10. Kuroda C, Murae T, Toda M, Nagano H, Takahashi T (1978) New 14-oxofuranoeremophilanes and related sesquiterpenes from Syneilesis palmata (Thunb.) Maxim. Chem Lett, 1313-1316
  11. Manabu H, Tsutomu F (1974) Syneilesine, a new pyrrolizine alkaloid from Syneilesis palmata. Tetrahedron Lett, 41, 3657-3660
  12. Bolhmann F, Grenz M (1977) Terpeneglucoside aus Syneilesis aconitifolia. Phytochem, 16, 1057-1059 https://doi.org/10.1016/S0031-9422(00)86728-X
  13. Bolhmann F, Zdero C (1978) Neue furaneremophilane und andere sesquiterpene aus vertretern gattung Europs. Phytochem, 17, 1135-1153 https://doi.org/10.1016/S0031-9422(00)94305-X
  14. Lee YS, Seo SJ, Kim NW (2009) Analysis of the general components of Syneilesis palmata Maxim. Korean J Food Preserv, 16, 412-418
  15. Lee YS, Ahn DS, Joo EY, Kim NW (2009) Antioxidative activities of Syneilesis palmata extract. J Korean Soc Food Sci Nutr, 38, 1471-1477 https://doi.org/10.3746/jkfn.2009.38.11.1471
  16. Lee KH, Choi SU, Lee KR (2005) Sesquiterpenes from Syneilesis palmata and their cytotoxicity against human cancer cell lines in vitro. Arch Pharm Res, 28, 280-284 https://doi.org/10.1007/BF02977792
  17. Kwon CS, Kwon YS, Kim YS, Kwon GS, Jin UG, Ryu GC, Sohn HY (2004) Inhibitory activities of edible and medicinal herbs against human thrombin. J Life Sci, 14, 509-513 https://doi.org/10.5352/JLS.2004.14.3.509
  18. Nieva Moreno MI, Isla MI, Sampietro AR, Vattuone MA (2000) Comparison of the free radical-scavenging activity of propolis from several regions of Argentina. J Ethnopharmacol, 71, 109-114 https://doi.org/10.1016/S0378-8741(99)00189-0
  19. AOAC (2005) Official method of analysis. 18th ed. Association of official analytical Chemists, Washington, DC, USA, 45, p 21-22
  20. Marklund S, Marklund G (1975) Involvement of superoxide amino radical in the oxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur J Biochem, 47, 468-474
  21. Kato H, Lee IE, Chuyen NV, Kim SB, Hayase F (1987) Inhibition of nitrosamine formation by nondialyzable melanoidins. Agric Biol Chem, 51, 1333-1338 https://doi.org/10.1271/bbb1961.51.1333
  22. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  23. Stirpe F, Corte ED (1969) The regulation of rat liver xanthine oxidase. J Biol Chem, 244, 3855-3861
  24. Shahidi F, Wanasundara PK (1992) Phenolic antioxidant. Crit Rev Food Sci, 32, 67-103 https://doi.org/10.1080/10408399209527581
  25. Velioglu YS, Mazza G, Gao L, Oomh BC (1998) Antioxidant activity and total phenolics in selected fruits, vegetables. and grain products. J Agri Food Chem, 46, 413-417
  26. Cai Y, Luo Q, Su M, Corke H (2004) Antioxidant activity and phenolic compounds of 112 Chinese medicinal plants associated with anticancer. Life Sci, 74, 2157-2184. https://doi.org/10.1016/j.lfs.2003.09.047
  27. Matkowski A (2008) Plant in vitro culture for the production of antioxidants. Rev Biotech Adv, 26, 548-560 https://doi.org/10.1016/j.biotechadv.2008.07.001
  28. Vinson JA, Pinch J, Bose P (2001) Determination of quantify and quality of polyphenol antioxidants in foods and beverages. Method Enzymol, 335, 103-114 https://doi.org/10.1016/S0076-6879(01)35235-7
  29. Duan X, Wu G, Jiang Y (2007) Evaluation of the antioxidant properties of litchi fruit phenolics in relation to pericarp browning prevention. Molecules, 12, 759-771 https://doi.org/10.3390/12040759
  30. Conner EM, Grisham MB (1996) Inflammation, free radicals, and antioxidants. Nutrition, 12, 274-280 https://doi.org/10.1016/S0899-9007(96)00000-8
  31. Zielinski H, Frias J, Piskula MK, Kozlowska H, Vidal-Valverde C (2006) The effect of germination process on the superoxide dismutase-like activity and thiamine, riboflavin and mineral contents of rapeseeds. Food Chem, 99, 516-521 https://doi.org/10.1016/j.foodchem.2005.08.014
  32. Fridovich I (1997) Superoxide anion radical ($O_2^-$), superoxide dismutases, and related matters. J Biol Chem, 272, 18515-18517 https://doi.org/10.1074/jbc.272.30.18515
  33. Shin SR, Hong JY, Nam HS, Yoon KY, Kim KS (2006) Anti-oxidative effects of extracts of Korean herbal materials. Korean J Soc Food Sci Nutr, 35, 187-191 https://doi.org/10.3746/jkfn.2006.35.2.187
  34. Bartsch H, Montesano R (1984) Relevance of nitrosamines to human cancer. Carcinogenesis, 5, 1381-1393 https://doi.org/10.1093/carcin/5.11.1381
  35. Mirivish SS, Wallcave L, Eagen M, Shubik P (1972) Ascorbate nitrite reaction: Possible means of the formation of carcinogenic N-nitroso compounds. Science, 177, 65-67 https://doi.org/10.1126/science.177.4043.65
  36. Yokozawa T, Chen CP, Dong E, Tanaka T, Nonaka GI, Nishioka I (1998) Study on the inhibitory effect of tannins and flavonoids against the 1,1-diphenyl-2-picrylhydrazyl radical. Biochem Pharmacol, 56, 213-222 https://doi.org/10.1016/S0006-2952(98)00128-2
  37. Kang YH, Park YK, Lee GD (1996) The nitrite scavenging and electron donating ability of phenolic compounds. Korean J Food Sci Technol, 28, 232-239
  38. Stroch J, Ferber E (1988) Amplifies chemiluminescence of lucigenin for determination of superoxide anion production by NADPH oxidase and xanthine oxidase. Analytical Biochem, 169, 262-266 https://doi.org/10.1016/0003-2697(88)90283-7
  39. Chiang HC, Lo YJ, Lu FJ (1994) Xanthine oxidase inhibitors from the leaves of Alsophila spinulosa (Hook) Tryon. J Enzyme Inhib, 8, 61-71 https://doi.org/10.3109/14756369409040777
  40. Borges F, Feranandes E, Roleira F (2002) Progress towards the discovery of xanthine oxidase inhibitors. Cur Med Chem, 9, 195-217 https://doi.org/10.2174/0929867023371229
  41. Cos P, Ying L, Calomme M, Hu JP, Cimanga K, Poel BV, Pieters L, Viletinck AJ, Berghe DV (1998) Structure activity relationship and classification of flavonoids as inhibitors of xanthine oxidase and super oxide scavengers. J Nat Prod, 61, 71-76 https://doi.org/10.1021/np970237h
  42. Adkins WK, Taylor AE (1990) Role of xanthine oxidase and neutrophils in ischemia-reperfusion injury in rabbit lung. J Appl Physiol, 69, 2012-2019
  43. Hande KR, Noone RM, Stone WJ (1984) Severe allopurinol toxicity: description and guidelines for prevention in patients with renal insufficiency. Am J Med, 76, 47-52
  44. Urban T, Maquarre E, Housset C, Chouaid C, Devin E, Lebeau B (1995) Allopurinol hypersensitivity. A possible cause of hepatitis and mucocutaneous eruptions in a patient undergoing antitubercular treatment. Rev Mal Respir, 12, 314-316