DOI QR코드

DOI QR Code

Anti-obesity effect of Polygala tenuifolia

원지(Polygala tenuifolia)의 항비만 효과

  • Hwang, Ju-Young (Department of Food Science and Biotechnology, Andong National University) ;
  • Wu, Yong-Xiang (Department of Food Science and Biotechnology, Andong National University) ;
  • Hwang, Dae-Il (Department of Food Science and Biotechnology, Andong National University) ;
  • Bae, Suk-Jae (Department of Food Science and Biotechnology, Andong National University) ;
  • Kim, Taewan (Department of Food Science and Biotechnology, Andong National University)
  • 황주영 (안동대학교 식품생명공학과) ;
  • 우용시앙 (안동대학교 식품생명공학과) ;
  • 황대일 (안동대학교 식품생명공학과) ;
  • 배석재 (안동대학교 식품생명공학과) ;
  • 김태완 (안동대학교 식품생명공학과)
  • Received : 2013.11.25
  • Accepted : 2013.11.29
  • Published : 2014.02.28

Abstract

This study was performed in order to investigate the anti-obesity effect of Polygala tenuifolia on lipid mechanism in 3T3-L1 adipocytes. The chemical composition of the P. tenuifolia was analyzed in order to assess its nutritional value. Total dietary fiber was the highest among the proximate component of the P. tenuifolia. These results showed that the P. tenuifolia may be used as a potential functional ingredient for anti-obesity effect. Intracellular lipid droplets in the adipocyte were stained with oil-red O dye and quantified. In comparison to the control, lipid accumulation was significantly decreased by 40.1% and 22.4% when treated with the water extract and 70% EtOH extract of the P. tenuifolia at the concentration of $10{\mu}g/mL$, respectively. The anti-adipogenic effect of the water extract was stronger than that of the 70% EtOH extract. The gene expression levels were measured via Western blot and real-time PCR. As a result, the water extract was found to have decrease the gene expression of SREBP-1c, PPAR, $C/EBP{\alpha}$, FAS, ACC in a dose-dependent manner. These indicate that the water extract inhibits pre-adipocyte differentiation and adipogenesis by blocking the SREBP-1c gene expression in 3T3-L1 cells. Therefore, P. tenuifolia can be used as an effective anti-obesity agent.

본 연구는 원지(Polygala tenuifolia)의 영양성분 및 항비만 효과를 측정하였다. 일반성분은 원지 원지의 경우 건부량 기준 탄수화물 21.7%, 조단백질 18.5%, 조지방 14.5%, 조회분 2.4%, 식이섬유 42.9%로 함유되어 있었다. 원지 열수 추출물과 70% 에탄올 추출물의 단백질, 유리아미노산, 총당 및 환원당 함량은 열수 추출물이 70% 에탄올 추출물보다 함유량이 높게 나타내었다. 원지 열수 추출물과 70% 에탄올 추출물의 총 폴리페놀 함량과 ABTS와 DPPH 라디칼 소거능을 측정한 결과, 총 폴리페놀 함량은 열수 추출물은 26.6 mg/g으로 70% 에탄올 추출물보다 폴리페놀 함유량이 높게 나타내었으며, ABTS 라디칼 소거능은 열수 추출물의 경우 0.95 mg/mL의 농도에서 $RC_{50}$값이 관찰되어 70% 에탄올 추출물보다 ABTS 라디칼 소거능이 우수한 것으로 확인하였다. DPPH 라디칼 소거능은 $RC_{50}$값이 70% 에탄올 추출물의 경우 3.29 mg/mL로 관찰되어 열수 추출물보다 70% 에탄올 추출물의 높은 활성을 나타내었다. 원지의 항비만 효과를 알아보기 위해 분화된 3T3-L1 지방세포에서 원지 열수 추출물과 70% 에탄올 추출물의 지방세포 분화억제에 미치는 영향을 확인하였다. MTT assay를 이용하여 세포 독성을 측정한 결과 $100{\mu}g/mL$ 이하의 농도에서 세포증식에 영향을 미치지 않는 것을 확인하였고, 이와 같은 결과를 토대로 oil-red O 염색법을 이용하여 지방세포 분화억제능을 측정하였다. 그 결과, 원지 열수 추출물의 경우 $10{\mu}g/mL$의 농도에서 40.1% 지방세포 분화 억제능을 나타내어 70% 에탄올 추출물보다 우수한 효과를 나타내었다. 지방생성에 영향을 미치는 유전자 발현량을 측정하기 위해 western blot법과 real-time PCR 법을 시행하였다. 원지 물 추출물은 SREBP-1c, $PPAR{\gamma}$, $CEBP/{\alpha}$의 단백질과 mRNA 발현을 억제 시켰고, 지방 생성에 영향을 미치는 효소인 FAS와 ACC의 생성을 조절하는 것으로 나타났다. 이와 같이 본 연구에서는 원지의 항비만 효능을 확인하였다. 원지물 추출물의 경우 비만 예방 효능을 가진 기능성 식품 소재로서의 개발이 기대되며, 원지의 항비만 효능을 최적화를 위하여 추후 동물 실험 및 독성 실험 등에 대한 연구가 필요할 것으로 생각된다.

Keywords

References

  1. Albu J, Allison D, Boozer CN, Heymsfield S, Kissileff H, Kretser A, Krumhar K, Leibei R, Nonas C, Pi-Sunyer X, Vanltallie T, Wedral E (1997) Obesity solutions: report of a meeting. Nutr Rev, 55, 150-156
  2. Grundy SM (1998) Multifactorial causation of obesity: implications for prevention. Am J Clin Nutr, 67, 563S-572S
  3. Haslam DW, James WP (2005) Obesity. Lancet, 366, 1197-1209 https://doi.org/10.1016/S0140-6736(05)67483-1
  4. Leung WY, Thomas GN, Chan JC, Tomlinson B (2003) Weight management and current options in pharmacotherapy: orlistat and sibutramine. Clin Ther, 25, 58-80 https://doi.org/10.1016/S0149-2918(03)90009-9
  5. Green H, Meuth M (1974) An established pre-adipose cell line and its differentiation in culture. Cell, 3, 127-133 https://doi.org/10.1016/0092-8674(74)90116-0
  6. Jessen BA, Stevens GJ (2002) Expression profiling during adipocyte differentiation of 3T3-L1 fibroblasts. Gene, 299, 95-100 https://doi.org/10.1016/S0378-1119(02)01017-X
  7. Rosen ED, Sarraf P, Troy AE, Bradwin G, Moore K, Milstone DS, Spiegelman BM, Mortensen RM (1999) PPAR is required for differentiation of adipose tissue in vivo and in vitro. Mol Cell, 4, 611-617 https://doi.org/10.1016/S1097-2765(00)80211-7
  8. Foretz M, Pacot C, Dugail I, Lemarchand P, Guichard C, Liepvre XL, Lubrano CB, Spiegelman B, Kim JB, Ferre P (1999) ADD1/SREBP1 is required in the activation of hepatic lipogenic gene expression by glucose. Mol Cell Biol, 19, 3760-3768
  9. Foretz M, Guichard C, Ferre P, Foufelle F (1999) Sterol regulatory element binding protein-1c is a major mediator of insulin action on the hepatic, expression of glucokinase and lipogenesis-related genes. Proc Natl Acad Sci USA, 96, 12737-12742 https://doi.org/10.1073/pnas.96.22.12737
  10. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J (1999) Regulation of peroxisome proliferator-activated receptor gamma expression by adipocyte differentiation and determination factor1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol, 19, 5495-5503
  11. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest, 109, 1125-1131 https://doi.org/10.1172/JCI0215593
  12. Ballinger A, Peikin SR (2002) Orlistat: its current status as an anti-obesity drug. Eur J Pharmacol, 440, 109-117 https://doi.org/10.1016/S0014-2999(02)01422-X
  13. Kim HJ, Kang CH, Kim SK (2012) Anti-adipogenic effect of Undaria pinnatifida extracts by ethanol in 3T3-L1 adipocytes. J Life Sci, 22, 1052-1056 https://doi.org/10.5352/JLS.2012.22.8.1052
  14. Park JA, Park C, Han MH, Kim BW, Chung YH, Choi YH (2011) Inhibition of adipocyte differentiation and adipogenesis by aged black garlic extracts in 3T3-L1 preadipocytes. J Life Sci, 21, 720-728 https://doi.org/10.5352/JLS.2011.21.5.720
  15. Suzuki R, Tanaka M, Takanashi M, Hussain A, Yuan B, Toyoda H, Kuroda M (2011) Anthocyanidins-enriched bilberry extracts inhibit 3T3-L1 adipocyte differentiation via the insulin pathway. Nutr Metab (Lond), 8, 14-22 https://doi.org/10.1186/1743-7075-8-14
  16. Lee DS, Choi HG, Li B, Kim KS, Kim SA, Chon SK, Rho JM, Kim KM, Han JH, Jeong GS, Kim YC (2011) Neuroprotective effect of the acid hydrolysis fraction of the roots of Polygala tenuifolia. Korean J Oriental Physiol Pathol, 25, 628-634
  17. Kim JS, Lee YS, Lee JH, Kim JS (1999) A study on the constituents from the roots of Polygala tenuifolia. Korean J Pharmacogn 30, 417-419.
  18. Park MK, Park JH, Kim BY, Kim JM, Liem KJ, Han BH (1993) Analysis of alkaloids in Polygala tenuifolia by HPLC. Anal Sci Technol, 6, 255-259.
  19. Jiang Y, Tu PF (2002) Xanthone O-glycosides from Polygala tenuifolia. Phytochem, 60, 813-816 https://doi.org/10.1016/S0031-9422(02)00184-X
  20. Ikeya Y, Sugama K, Okada M, Mitsuhashi H (1999) Two xanthones from Polygala tenuifolia. Phytochem, 30, 2305-2308
  21. Fujita T, Liu DY, Ueda S, Takeda Y (1992) Xanthones from Polygala tenuifolia. Phytochem, 31, 2061-2065
  22. Cheong MH, Lee SR, Yoo HS, Jeong JW, Kim GY, Kim WJ, Jung IC, Choi YH (2011) Anti-inflammatory effects of Polygala tenuifolia root through inhibition of NF-${\kappa}B$ activation in lipopolysaccharide-induced BV2 microglial cells. J Ethnopharmacol, 137, 1402-1408 https://doi.org/10.1016/j.jep.2011.08.008
  23. Woo WS, Lee KY (1962) Effects of total saponin and oil fraction of Polygala tenuifolia on serum cholesterol level in rabbits. Korean J Pharmacog, 6, 8-10
  24. Xu SP, Yang YY, Xue D, Liu JX, Liu XM, Fan TP, le Pan R, Li P (2011) Cognitive-enhancing effects of polygala saponin hydrolysate in ${\alpha}{\beta}$(25-35)-induced amnesic mice. Evid Based Complement Alternat Med, 10, 1-12
  25. Naito R, Tohda C (2006) Characterization of anti-neurodegenerative effects of Polygala tenuifoliain ${\alpha}{\beta}$(25-35)-treated cortical neurons. Biol Pharm Bull, 29, 1892-1896 https://doi.org/10.1248/bpb.29.1892
  26. Ban JY, Lee HJ, Lee SB, Lee YJ, Seong NS, Song KS, Bae KW, Seong YH (2003) Methanol extract of Polygalae radix protects excitotoxicity in cultured neuronal cells. Korean J Medicinal Crop Sci, 11, 298-305
  27. AOAC (1990) Official Methods of Analysis. 11 thed. Association of Official Analyticial Chemists, Washington, DC, USA, p 17
  28. Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem, 193, 265-275
  29. Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith F (1956) Colorimetric method for determination of sugars and related substances. Anal Biochem, 28, 350-355
  30. Luchsinger WW, Cornesky RA (1962) Reducing power by the dinitrosalicylic acid method. Anal Biochem, 4, 346-347 https://doi.org/10.1016/0003-2697(62)90098-2
  31. Folin O, Denis W (1912) On phosphotungasticphosophomolybdic compounds as color reagents. Anal Biochem, 12, 239-249
  32. Blois MS (1954) Antioxidant determination by the of a stable free radical. Nature, 181, 1198-1200
  33. Re R, Pellegrini N, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying and improved ABTS radical cation decolorization assay. Free Radic Biol Med, 26, 1231-1237 https://doi.org/10.1016/S0891-5849(98)00315-3
  34. Kim CA, Oh DH, Eun JB (2006) Change of physicochemical characteristics and functional components in the raw materials of Saengsik, uncooked food by drying methods. Korean J Food Sci Technol, 38, 188-196
  35. Nishimune T, Yakushiji T, Sumimoto T, Taguchi S, Konishi Y, Nakahara S, Ichikawa T, Kunita N (1991) Glycemic response and fiber content of some foods. Am J Clin Nutr, 54, 414-419
  36. Rosamond WD (2002) Dietary fiber and prevention of cardiovascular disease. J Am Coll Cardiol, 39, 57-59
  37. Chau CF, Huang YL, Lin CY (2004) Investigation of the cholesterol-lowering action of insoluble fibre derived from the peel of Citrus sinensis L. cv. Liucheng. Food Chem, 87, 361-366 https://doi.org/10.1016/j.foodchem.2003.12.006
  38. Kin DM, Kim KH, Sung NY, Jung PM, Kim JS, Kim JK, Kim JH, Choi JI, Song BS, Lee JW, Kim JK, Yook HS (2011) Effects of gamma irradiation on the extraction yield and whitening activity of polysaccharides from Undaria pinnatifida sporophyll. J Korean Soc Food Sci Nutr, 40, 712-716 https://doi.org/10.3746/jkfn.2011.40.5.712
  39. Duval B, Shetty K (2001) The stimulation of phenolics and antioxidant activity in pea (Pisum sativum) elicited by genetically transformed andise root extract. J Food Biochem, 25, 361-377 https://doi.org/10.1111/j.1745-4514.2001.tb00746.x
  40. Choi KS, Lee HY (1999) Characteristics of useful components in the leaves of Baechohyang (Agastache rugosa, O. Kuntze). J Korean Soc Food Sci Nutr, 28, 326-332
  41. Yoshizawa S, Horiuchi T, Yoshida T, Okuda T (1987) Antitumor promoting activity of (-)-epigallocatechin gallate, the main consititutent of tannin in green tea. Phytother Res, 1, 44-47 https://doi.org/10.1002/ptr.2650010110
  42. Zhang JW, Tang QQ, Vinson C. Lane MD (2004) Dominant-negative C/EBP disrupts mitotic clonal expansion and differentiation of 3T3-L1 preadipocytes. Proc Natl Acad Sci USA, 101, 43-47 https://doi.org/10.1073/pnas.0307229101
  43. Gregoire FM, Smas CM, Sui HS (1998) Understanding adipocyte differentiation. Physiol Rev, 78, 783-809
  44. Lee MS, Kim CT, Kim CJ, Cho YJ, Kim YH (2006) Effects of Portulaca oleracea L. extract on lipolysis and hormone sensitive lipase (HSL) gene expression in 3T3-L1 adipocytes. Korean J Food Nutr, 55, 309-313
  45. Horton JD, Goldstein JL, Brown MS (2002) SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest 109, 1125-1131 https://doi.org/10.1172/JCI0215593
  46. Fajas L, Schoonjans K, Gelman L, Kim JB, Najib J, Martin G, Fruchart JC, Briggs M, Spiegelman BM, Auwerx J (1999) Regulation of peroxisome proliferator-activated receptor ${\gamma}$ expression by adipocyte differentiation and determination factor 1/sterol regulatory element binding protein 1: implications for adipocyte differentiation and metabolism. Mol Cell Biol, l19, 5495-5503
  47. Harbour JW, Luo RX, Dei Santi A, Postige AA, Dean DC (1999) Cdk hosphorylation triggers sequential intramolecular interactions that progressively block Rb fuctions as cells move through G1. Cell, 98, 859-869 https://doi.org/10.1016/S0092-8674(00)81519-6
  48. Hwang HS, Kim SH, Yoo YG, Chu YS, Shon YH, Nam KS, Yun JW (2008) Inhibitory effect of deep-sea water on differentiation of 3T3-L1 adipocytes. Mar Biotechnol, 11, 161-168

Cited by

  1. Effects of Cladosiphon okamuranus on Lipid Metabolism in High-fat-diet Rats vol.26, pp.6, 2016, https://doi.org/10.5352/JLS.2016.26.6.657
  2. Ethanol Extract of Hippophae Rhamnoides L. Leaves Inhibits Adipogenesis through AMP-activated protein kinase (AMPK) Activation in 3T3-L1 Preadipocytes vol.28, pp.5, 2015, https://doi.org/10.7732/kjpr.2015.28.5.582
  3. A 4-week Repeated dose Oral Toxicity Study of Mecasin in Sprague-Dawley Rats to Determine the Appropriate Doses for a 13-week, Repeated Toxicity Test vol.18, pp.4, 2015, https://doi.org/10.3831/KPI.2015.18.037
  4. 산화적 스트레스에 의한 간세포의 DNA 손상 및 세포사멸 유도에 미치는 원지 에탄올 추출물의 보호 효과 vol.19, pp.1, 2014, https://doi.org/10.15429/jkomor.2019.19.1.1
  5. 뽕잎 추출물 기원 Flavonoid Rich Fraction의 항비만효과 vol.28, pp.6, 2020, https://doi.org/10.7783/kjmcs.2020.28.6.395
  6. Inhibitory Effect of Adipocyte Differentiation of Purified Mulberry Anthocyanins using Macroporous Resin vol.29, pp.3, 2021, https://doi.org/10.7783/kjmcs.2021.29.3.173