DOI QR코드

DOI QR Code

Sensory quality, antioxidant, and inhibitory activities of XO and AO of Smilax china leaf tea fermented by Aspergillus oryzae

Aspergillus oryzae 발효 청미래덩굴잎 분말차의 관능적 품질 및 항산화능과 xanthine oxidase 및 aldehyde oxidase 저해활성

  • Lee, Sang-Il (Department of Food, Nutrition and Cookery, Keimyung College) ;
  • Lee, Ye-Kyung (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Kim, Soon-Dong (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Yang, Seung Hwan (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University) ;
  • Suh, Joo-Won (Division of Bioscience and Bioinformatics, College of Natural Science, Myongji University)
  • 이상일 (계명문화대학교 식품영양조리학부) ;
  • 이예경 (명지대학교 생명과학정보학부) ;
  • 김순동 (명지대학교 생명과학정보학부) ;
  • 양승환 (명지대학교 생명과학정보학부) ;
  • 서주원 (명지대학교 생명과학정보학부)
  • Received : 2013.07.24
  • Accepted : 2013.12.18
  • Published : 2014.02.28

Abstract

This study was conducted in order to investigate the optimal fermentation periods of the Smilax china L. leaves as a fermented tea via Aspergillus oryzae for 0 (non-fermented), and 10, 20, and 30 days (NF, F10, F20, F30). It was also observed for its quality characteristics. In the color and spectrum (400~700nm) of 1% tea water extract, NF was light yellow, whereas fermented tea (F10~F30) was light red color, and the F10 among F10~F30 has the clearest color and spectrum. Furthermore, acceptabilities of aroma and brightness were insignificantly different between NF and F10~30, while the mouth feel and overall acceptabilities were insignificantly distinct among all of the fermented teas. Therefore, these results suggest that the appropriate fermentation period for tea fermentation is 10 days. On the other hand, the total polyphenol and flavonoid content in the NF was the highest among all of the fermented teas. In the antioxidant parameters, EDA (electron donating ability), FRAP (ferric reducing antioxidant power), and LPOIA (lipid peroxidation inhibitory activity) in the NF were the highest among all fermented teas. Meanwhile, the XOI (xanthine oxidase inhibitory activity) was low, as well as insignificantly different from NF and F10~F30, whereas the AOI (aldehyde oxidase inhibitory activity) was markedly higher (38.09~41.70%) by the hot water tea extract (with or without fermentation), particularly the AOI that has increased via fermentation. In conclusion, the overall antioxidant activity tended to be reduced by fermentation; however, the EDA, FRAP and LPOIA in the fermented tea for 10 days was higher than the activities during 20~30 days of fermentation. There was a similar result in the color and acceptability of fermented tea for 10 days, which was remarkably better than those of 20-30 days. Therefore, fermented tea from the leaves of Smilax china L. could be expected to be used as a functional tea without the loss of inhibitory activity of both the XO and AO via fermentation.

A. oryzae로 발효한 청미래덩굴(Smilax china L.)잎 발효차의 적정 발효기간을 확립하고자 비 발효(NF) 및 10, 20 및 30일간 발효(F10, F20, F30)시킨 차 1% 열수추출물(1 tea bag 기준)의 색상, 관능검사 및 total polyphenol(TP), total flavonoid(TF), 전자공여능(EDA), 철환원력(FRAP), 과산화물 생성 억제능(LPOIA)을 조사하였다. 또, 체내 활성산소(ROS) 생성계 효소인 동시에 요통과 음주로 인한 간손상유도 및 이로 인한 복부비만에 직간접적으로 관여하는 xanthine oxidase(XO) 및 aldehyde oxidae(AO)의 저해활성에 미치는 영향을 조사하였다. 색상과 spectrum(400~700nm)의 변화를 조사한 결과, NF는 연한 황색을 띠는 반면 F10∼F30에서는 엷은 적색을 띠었으며 F10의 색상이 가장 선명하였다. 향(aroma)과 밝기(brightness)에 대한 기호도는 비발효차와 발효차간의 유의차를 보이지 않았으나 맛(taste)과 입에 닿는 감각(mouth feel) 및 종합적인 기호도(overall acceptability)는 F10, F20 및 F30 간의 뚜렷한 차이를 보이지 않아 발효 10일이 이상적인 발효기간이라 사료된다. TP 함량은 NF에서 41.55 mg/g(dry basis)이었으나 발효에 따라 거의 비례적으로 감소하였으며 그 감소율은 발효 10일째 24.91%, 20일째 56.92%, 30일째 64.41%를 나타내었다. TF의 함량은 NF에서 27.33 mg을 나타내었으나 발효에 점차적으로 감소하여 F10 24.30 mg/g, F20 17.32 mg/g, F30 13.22 mg/g으로 감소하였다. 그러나 TP의 감소율이 TF의 경우에 비하여 커서 TF/TP 비율(%)은 발효에 따라 증가하는 경향을 나타내었다. EDA는 NF에서는 29.01%이었으나 F10에서는 NF에 비하여 17.14%가 감소하였으며, F20 및 F30에서는 각각 18.79% 및 23.20%가 감소하였다. FRAP(${\mu}M$ $Fe^{2+}$)는 NF 4.63, F10 4.30, F20 및 F30에서는 각각 3.77 및 3.47로 발효에 따라 감소하는 경향을 보였다. LPOIA는 NF에서는 39.86%이었으나 F10의 경우는 31.92%로 NF에 비하여 19.92%가 감소하였고 F20 및 F30는 NF에 비하여 각각 23.61% 및 28.38%가 감소하였다. NF 및 F10∼30의 1% 열수추출액이 생유 및 토끼 간 조직으로부터 부분정제한 XO와 AO의 활성에 미치는 영향을 조사한 결과, XO활성에는 비발효, 발효 모두에서 뚜렷한 영향을 미치지 않았다. 그러나 AO의 활성은 비발효, 발효 관계없이 38.09∼41.70%범위로 억제하였으며, 이러한 억제는 경쟁적 저해현상에 기인되어 나타난 것으로 생각된다.

Keywords

References

  1. Carr MC (2003) The emergence of the metabolic syndrome with menopause. J Clin Endocrinol Metab, 88, 2404-2411 https://doi.org/10.1210/jc.2003-030242
  2. Halliwell B (2006) Reactive oxygen species and the central nervous system. J Neurochem, 59, 1609-1623
  3. Jeon SM, Bok SH, Jang MK, Lee MK, Nam KT, Park YB, Rhee SJ, Choi MS (2001) Antioxidative activity of naringin and lovastatin in high cholesterol-fed rabbits. Life Sci, 69, 2855-2866 https://doi.org/10.1016/S0024-3205(01)01363-7
  4. Moon SH, Lee MK, Chae KS (2001) Inhibitory effects of the solvent fractions from persimmon leaves on xanthine oxidase activity. Korean J Food Nutr, 14, 120-125
  5. Cheng DS, Hua XL (2006) Today's research of Smilax china. J Chin Med Mater, 29, 90-93
  6. Song HS, Park YH, Jung SH, Kim DP, Jung YH, Lee MK, Moon KY (2006) Antioxidant activity of extracts from Smilax china root. J Korean Soc Food Sci Nutr, 35(9), 1133-1138 https://doi.org/10.3746/jkfn.2006.35.9.1133
  7. Shu XS, Gao ZH, Yang XL (2006) Anti-inflammatory and anti-nociceptive activities of Smilax china L. aqueous extract. J Ethnopharmacol, 103, 327-332 https://doi.org/10.1016/j.jep.2005.08.004
  8. Li YL, Gan GP, Zhang HZ, Wu HZ, Li CL, Huang YP, Liu YW, Liu JW (2007) A flavonoid glycoside isolated from Smilax china L. rhizome in vitro anticancer effects on human cancer cell lines. J Ethnopharmacol, 113, 115-124 https://doi.org/10.1016/j.jep.2007.05.016
  9. Choi HY (2004) Antimicrobial effect of ethanol extract of Smilax china leaf. Korean J Sanitation, 19, 22-30
  10. Chena L, Yina H, Lanb Z, Maa S, Zhanga C, Yanga Z, Li P, Linc B (2011) Anti- hyperuricemic and nephroprotective effects of Smilax china L. J Ethnopharmacol, 135, 399-405 https://doi.org/10.1016/j.jep.2011.03.033
  11. Ham YK and Kim SW (2004) Protective effects of plant extract on the hepatocytes of rat treated with carbon tetrachloride. J Korean Soc Food Sci Nutr, 33, 1246-1251 https://doi.org/10.3746/jkfn.2004.33.8.1246
  12. Beedham C (1987) Molybdenum hydroxylases: biological distribution and substrate- inhibitor specificity. Prog Med Chem, 24, 85-121 https://doi.org/10.1016/S0079-6468(08)70420-X
  13. Al-Salmy HS (2001). Individual variation in hepatic aldehyde oxidase activity. IUBMB Life, 51, 249-253 https://doi.org/10.1080/152165401753311799
  14. Kitamura S, Nakatani K, Sugihara K, Ohta S (1999) Strain differences of the ability to hydroxylate methotrexate in rats. Comp Biochem Physiol, 122C, 331-336
  15. Hirao Y, Kitamura S, Tatsumi, K (1994) Epoxide reductase activity of mammalian liver cytosols and aldehyde oxidase. Carcinogenesis, 15, 739-743 https://doi.org/10.1093/carcin/15.4.739
  16. Sugihara K, Kitamura S, Tatsumi K (1996) Involvement of mammalian liver cytosols and aldehyde oxidase in reductive metabolism of zonisamide. Drug Metab Dispos, 24, 199-202
  17. McCrystal M, Evans B, Harvey V, Thompson P, Porter D, Baguley B (1999) Phase 1 study of the cytotoxic agent N-w2-(dimethylamino)ethylxacridine-4-carboxamide. Cancer Chemother Pharmacol, 44, 39-44 https://doi.org/10.1007/s002800050942
  18. Kundu TK, Hille R, Velayutham M, Zweier JL (2007) Characterization of superoxide production from aldehyde oxidase: an important source of oxidants in biological tissues. Arch Biochem Biophys, 460, 113-121 https://doi.org/10.1016/j.abb.2006.12.032
  19. Shaw S, Jayatilleke E (1990) The role of aldehyde oxidase in ethanol-induced hepatic lipid peroxidation in the rat. Biochem J, 268, 579-583
  20. Conklin D, Prough R, Bhatanagar A (2007) Aldehyde metabolism in the cardiovascular system. Mol Biosyst, 3, 136-150 https://doi.org/10.1039/b612702a
  21. Weigert J, Neumeier M, Bauer S, Mages W, Schnitzbauer AA, Obed A, Grooschl B, Hartmann A, Schaaffler A, Aslanidis C, Schoolmerich J, Buechler C (2008) Small-interference RNA-mediated knock-down of aldehyde oxidase 1 in 3T3-L1 cells impairs adipogenesis and adiponectin release. FEBS Lett, 582, 2965-2972 https://doi.org/10.1016/j.febslet.2008.07.034
  22. Mercader J, Ribot J, Murano I, Felipe F, Cinti S, Bonet ML. and Palou A (2006). Remodeling of white adipose tissue after retinoic acid administration in mice. Endocrinol, 147, 5325-5332 https://doi.org/10.1210/en.2006-0760
  23. Neumeier M, Weigert J, Schaaffler A, Weiss TS, Schmidl C, Buuttner R, Bollheimer C, Aslanidis C, Schoolmerich J, Buechler C (2006) Aldehyde oxidase 1 is highly abundant in hepatic steatosis and is downregulated by adiponectin and fenofibric acid in hepatocytes in vitro. Biochem Biophys Res Commun, 350, 731-735 https://doi.org/10.1016/j.bbrc.2006.09.101
  24. Pryde DC, Dalvie D, Hu Q, Jones P, Obach RS, Tran TD (2010). Aldehyde oxidase: an enzyme of emerging importance in drug discovery. J Med Chem, 53, 8441-8460 https://doi.org/10.1021/jm100888d
  25. Garattini E, Terao M (2011) Increasing recognition of the importance of aldehyde oxidase in drug development and discovery. Drug Metab Rev, 43, 374-386 https://doi.org/10.3109/03602532.2011.560606
  26. Halder B, Pramanick S, Mukhopadhyay S, Giri AK (2006) Anticlastogenic effects of black tea polyphenols theaflavins and thearubigins in human lymphocytes in vitro. Toxicol In Vitro, 20, 608-613 https://doi.org/10.1016/j.tiv.2005.10.010
  27. Herbert A, Jeol LS (1993) Sensory evaluation practices. 2nd ed. Academic Press, New York, USA, p 68-94
  28. Minussi RC, Rossi M, Bologna L, Cordi L, Rotilio D, Pastore GM, Duran N (2003) Phenolic compounds and total antioxidant potential of commercial wines. Food Chem, 82, 409-416 https://doi.org/10.1016/S0308-8146(02)00590-3
  29. Meda A, Lamien CE, Romito M, Millogo J, Nacoulma OG (2005) Determination of the total phenolic, flavonoid and proline contents in burkina fasan honey, as well as their radical scavenging activity. Food Chem, 91, 571-577 https://doi.org/10.1016/j.foodchem.2004.10.006
  30. Blois MS (1958) Antioxidant determination by the use of a stable free radical. Nature, 181, 1199-1200 https://doi.org/10.1038/1811199a0
  31. Benzie IF, Strain JJ (1996) The ferric reducing ability of plasma(FRAP) as a measure of antioxidant power: the FRAP assay. Anal Biochem, 239, 70-76 https://doi.org/10.1006/abio.1996.0292
  32. Banerjee A, Dasgupta N, De B (2005) In vitro study of antioxidant activity of Syzygium cumini fruit. Food Chem, 90, 727-733 https://doi.org/10.1016/j.foodchem.2004.04.033
  33. Rajagopalan KV, Fridovich I, Handler P (1962) Hepatic aldehyde oxidase: I. Purification and properties. J Biol Chem, 237, 922-928
  34. Stirpe F, Della Corte E (1969) The regulation of rat liver xanthine oxidase. Conversion in vitro of the enzyme activity from dehydrogenase (type D) to oxidase (type O). J Biol Chem, 244, 3855-3863
  35. Chen YS, Liu BL, Chang YN (2010) Effects of bacterial strains on sensory quality of Pu-erh tea in an improved pile-fermentation process. J Biosci Bioehg, 109, 557-563 https://doi.org/10.1016/j.jbiosc.2009.11.004
  36. Owuor PO, Obanda M, Nyirenda HE, Mphangwe NIK, Wright LP, Apostolides Z (2006) The relationship between some chemical parameters and sensory evaluations for plain black tea (Camellia sinensis) produced in Kenya and comparison with similar teas from Malawi and South Africa. Food Chem, 97, 644-653 https://doi.org/10.1016/j.foodchem.2005.04.027
  37. Lee YK, Lee SI, Kim JS, Yang SH, Lee IA, Kim SD, Suh JW (2012) Antioxidant activity of green tea fermented with Monascus pilosus. J Appl Biol Chem, 55, 19-25 https://doi.org/10.3839/jabc.2011.054
  38. Angayarkanni J, Palaniswamy M, Murugesan S, Swaminathan K (2002) Improvement of tea leaves fermentation with Aspergillus spp. pectinase. J Biosci Bioeng, 94, 299-303 https://doi.org/10.1016/S1389-1723(02)80167-0
  39. Zhong X, Peng L, Zheng S, Sun Z, Ren Y, Dong M, Xu A (2004) Secretion, purification, and characterization of a recombinant Aspergillus oryzae tannase in Pichia pastoris. Protein Expr Purif, 36, 165-169 https://doi.org/10.1016/j.pep.2004.04.016
  40. Osawa T (1994) Novel natural antioxidant for utilization in food and biological system. In Postharvest Biochemistry of Plant Food Material in the Tropics. Uritani I, Garcia VV, Mendoza EM, eds. Japan Scientific Societies Press, Tokyo, Japan. p 241-251
  41. Angioloni A, Collar C (2011) Buckwheat the source of antioxidant activity in functional foods. J Sci Food Agric, 91, 1283-1292 https://doi.org/10.1002/jsfa.4314
  42. Arakawa H, Maeda M, Okubo S, Shimamura T (2004) Role of hydrogen peroxide in bactericidal action of catechin. Biol Pharm Bull, 27, 277-281 https://doi.org/10.1248/bpb.27.277
  43. Choi CH, Song ES, Kim SJ, Kang MH (2003) Antioxidative activities of Castanea crenata Flos. methanol extracts. Korean J Food Sci Technol, 35, 1216-1220
  44. Kang YH, Park YK, Oh SR, Moon KD (1995) Studies on the physiological functionality of pine needle and mugwort extracts. Korean J Food Sci Technol, 27, 978-984
  45. Ko MS, Yang JB (2011) Antioxidant and antimicrobial activities of Smilax china leaf extracts. Korean J Food Preserv, 18, 764-772 https://doi.org/10.11002/kjfp.2011.18.5.764
  46. Torel J, Gillard J, Gillard P (1986) Antioxidant activity of flavonoids and reactivity with peroxy radical. Phytochem, 25, 383-385 https://doi.org/10.1016/S0031-9422(00)85485-0
  47. Hur SJ, Ye BW, Lee JL, Ha YL, Park GB, Joo ST (2004) Effect of conjugated linoleic acid on color and lipid oxidation of beef patties during cold storage. Meat Sci, 66, 771-775 https://doi.org/10.1016/S0309-1740(03)00104-9
  48. Yasuhara A, Akiba-Goto M, Fujishiro I, Uchida H, Uwajima T, Aisaka K (2002) Production of aldehyde oxidases by microorganisms and their enzymatic properties. J Biosci Bioeng, 94, 124-129 https://doi.org/10.1016/S1389-1723(02)80131-1
  49. Yamaguchi Y, Matsumura T, Ichida K, Okamoto K, Nishino T (2007) Human xanthine oxidase changes its substrate specificity to aldehyde oxidase type upon mutation of amino acid residues in the active site: roles of active site residues in binding and activation of purine substrate. J Biochem, 141, 513-524 https://doi.org/10.1093/jb/mvm053
  50. Garattini E, Fratelli M, Terao M (2009) The mammalian aldehyde oxidase gene family. Human Genomics, 4, 119-130
  51. Krenitsky TA (1978) Aldehyde oxidase and xanthine oxidase-functional and evolutionary relationships. Biochem Pharmacol, 27, 2763-2764 https://doi.org/10.1016/0006-2952(78)90186-7
  52. Stoddart AM, Levine WG (1992) Azoreductase activity by purified rabbit liver aldehyde oxidase. Biochem Pharmacol, 43, 2227-2235 https://doi.org/10.1016/0006-2952(92)90182-I
  53. Itoh K (2009) Individual and strain differences of aldehyde oxidase in the rat. Yakugaku Zasshi, 129, 1487-1493 https://doi.org/10.1248/yakushi.129.1487
  54. Dambrova M, Uhle'n S, Welch CJ, Wikberg JES (1998) Identification of an N-hydroxyguanidine reducing activity of xanthine oxidase. Eur J Biochem, 257, 178-184 https://doi.org/10.1046/j.1432-1327.1998.2570178.x
  55. Moriwaki Y, Yamamoto T, Nasako Y, Takahashi S, Suda M, Hiroishi K, Hada T, Higashino K (1993) In vitro oxidation of pyrazinamide and allopurinol by rat liver aldehyde oxidase. Biochem Pharmacol, 46, 975-981 https://doi.org/10.1016/0006-2952(93)90661-F
  56. Ali S, Pawa S, Naime M, Prasad R, Ahmad T, Farooqui H, Zafar H (2008) Role of mammalian cytosolic molybdenum Fe-S flavin hydroxylases in hepatic injury. Life Sci, 82, 780-788 https://doi.org/10.1016/j.lfs.2008.01.011
  57. Rashidi MR, Nazemiyeh H (2010) Inhibitory effects of flavonoids on molybdenum hydroxylases activity. Expert Opin Drug Metab Toxicol, 6, 133-152 https://doi.org/10.1517/17425250903426164

Cited by

  1. Evaluation of the Anti-obesity Activity of Platycodon grandiflorum Root and Curcuma longa Root Fermented with Aspergillus oryzae vol.47, pp.1, 2015, https://doi.org/10.9721/KJFST.2015.47.1.111