DOI QR코드

DOI QR Code

Effect of 3-Amino-1,2,4-triazole on Microstructure and Properties of Maleated HDPE/Maleated EPDM Blend

3-Amino-1,2,4-triazole이 Maleated HDPE/Maleated EPDM 블렌드의 미세구조 및 물성에 미치는 영향

  • Kim, Tae Hyun (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Chang, Young-Wook (Department of Fusion Chemical Engineering, Hanyang University) ;
  • Lee, Yong Woo (Department of Chemistry and Applied Chemistry, Hanyang University) ;
  • Kim, Dong Hyun (Convergent Technology, R&D Division, Korea Institute of Industrial Technology)
  • 김태현 (한양대학교 융합화학공학과) ;
  • 장영욱 (한양대학교 융합화학공학과) ;
  • 이용우 (한양대학교 응용화학과) ;
  • 김동현 (한국생산기술연구원 융복합연구부문)
  • Received : 2014.01.16
  • Accepted : 2014.03.05
  • Published : 2014.03.31

Abstract

3-Amino-1,2,4-triazole (ATA) (2.5 and 5.0 phr) was incorporated into a immiscible maleated ethylene propylene diene rubber(mEPDM)/maleated high density polyethylene(mHDPE) (50 wt%/50 wt%) blend by melt mixing. Effects of the ATA on structure, mechanical and rheological properties of the blend was investigated. FT-IR and DMA results revealed that supramolecular hydrogen bonding interactions between the polymer chains occur by reaction of ATA with maleic anhydride grafted onto the component polymers in the blend, which induces the physical crosslinks in the blend. FE-SEM analysis showed that mEPDM forms a dispersed phase in continuous mHDPE matrix, and the blend with the ATA has finer phase morphology as compared to the blend without the ATA. By the addition of ATA in the blend, there were significant increases in tensile strength, modulus and elongation-at-break as well as elastic recoverability. Melt rheology studies revealed that ATA induced substantial increase in storage modulus and complex viscosity of the blend at the melt state.

3-Amino-1,2,4-triazole(ATA)을 비상용성 블렌드인 maleated HDPE(mHDPE)/maleated EPDM (mEPDM)(50 wt%/50 wt%)에 용융혼합에 의해 2.5 phr, 5.0 phr 첨가하였으며, ATA 첨가에 따른 블렌드의 미세구조, 기계적물성 및 유변물성을 FT-IR, FE-SEM, 인장시험, DMA 및 ARES를 이용하여 각각 조사하였다. FTIR 및 DMA 분석결과 용융혼합 과정에서 ATA가 mHDPE 및 mEPDM의 말레무수물과 반응하여 초분자적 수소결합이 형성되며, 이로부터 물리적 가교구조가 형성되는 것을 알 수 있었다. FE-SEM 분석결과 mHDPE/mEPDM 블렌드는 플라스틱인 HDPE가 연속상을 이루고 고무상인 EPDM이 분산상을 이루며 ATA를 첨가함으로써 모폴로지가 더욱 미세해짐을 알 수 있었다. 인장물성시험결과 ATA에 첨가에 의해 형성된 물리적가교구조로 인해 인장강도, 모듈러스, 파단신율 값 및 탄성복원력이 증가되었으며, 용융레올로지 특성 분석결과 ATA가 첨가됨으로써 블렌드의 저장탄성율과 용융점도가 증가됨을 알 수 있었다.

Keywords

References

  1. S. K. De and A. K. Bhowmick Ed, "Thermoplastic Elastomers from Rubber-Plastic Blends" Ellis Horwood, New York, 1990.
  2. B. C. Kim, S. S. Hwang, K. Y. Lim, and K. J, Yoon, "Toughening of PP/EPDM blend by compatibilization", J. Appl. Polym. Sci., 78, 1267 (2000). https://doi.org/10.1002/1097-4628(20001107)78:6<1267::AID-APP130>3.0.CO;2-B
  3. A. L. N. Da Silva and F. M. B. Coutinho, "Some properties of polymer blend based on EPDM/PP", Polym. Test., 15, 45 (1996). https://doi.org/10.1016/0142-9418(95)00012-7
  4. H. Ismail and Suryadiansyah, "Thermoplastic elastomers based on polypropylene/natural rubber and polypropylene/recycle rubber blends", Polym. Test., 21, 389 (1996).
  5. A. L. N. Da Silva, M. C. G. Rocha, F. M. B. Coutinho, R. E.S. Bretas, and M. Farah, "Evaluation of rheological and mechanical behavior of blends based on polypropylene and metallocene elastomers", Polym. Test., 21, 647 (2002). https://doi.org/10.1016/S0142-9418(01)00137-4
  6. Z. S. Fu, Z. Q. Fan, Y.Q. Zhang, and L. X. Feng, "Structure and morphology of polypropylene/poly(ethylene-co-propylene) in-situ blends synthesized by spherical Ziegler-Natta catalyst", Eur. Polym. J., 39, 795 (2003). https://doi.org/10.1016/S0014-3057(02)00287-2
  7. W. Feng and A. I. Isayev, "In situ compatibilization of PP/EPDM blends during ultrasound aided extrusion", Polymer, 45, 1207 (2004). https://doi.org/10.1016/j.polymer.2003.12.033
  8. Y. Chen and H. Li, "Phase morphology evolution and compatibility improvement of PP/EPDM by ultrasound irradiation", Polymer, 46, 7707 (2005). https://doi.org/10.1016/j.polymer.2005.05.066
  9. E. Prut, T. Medintseva, and V. Dreval, "Mechanical and rheological behavior of unvulcanized and dynamically vulcanized i-PP/EPDM blends", Macromol. Symp., 233, 78 (2006). https://doi.org/10.1002/masy.200690031
  10. Y. Chen, C. Xu, L. Cao, Y. Wang, and X. Cao, "PP/EPDMbased dynamically vulcanized thermoplastic olefin with zinc dimethacrylate: preparation, rheology, morphology, crystallization and mechanical properties", Polym. Test., 31, 728 (2012). https://doi.org/10.1016/j.polymertesting.2012.05.010
  11. S. George, R. Joseph, S. Thomas, and K.T. Varughese, "Blends of isotactic polypropylene and nitrile rubber: morphology, mechanical properties and compatibilization", Polymer, 36, 4405 (1995). https://doi.org/10.1016/0032-3861(95)96846-Z
  12. Z. Su, P. Jiang, Q. Li, P. Wei, G. Wang, and Y. Zhang, "Mechanical properties and morphological structures relationship of blends based on sulfated EPDM ionomer and polypropylene", J. Appl. Polym. Sci., 94, 1504 (2004). https://doi.org/10.1002/app.21068
  13. P. Antony, S. Bandyopadhyay, and S. K. De, "Thermoplastic elastomers based on ionomeric polyblends of zinc salts of maleated polypropylene and maleated EPDM rubber", Polym. Eng. Sci., 39, 963 (1999). https://doi.org/10.1002/pen.11485
  14. P. Antony, S. Bandyopadhyay, and S. K. De, "Synergism in properties of ionomeric polyblends based on zinc salts of carboxylated nitrile rubber and poly(ethylene-co-acrylic acid)", Polymer, 41, 787 (2000). https://doi.org/10.1016/S0032-3861(99)00037-3
  15. P. Antony, S. Bandyopadhyay, and S. K. De, "Thermoplastic elastomers based on ionomeric polyblends of zinc salts of poly(propylene-co-acrylic acid) and carboxylated nitrile rubber", J. Mater. Sci., 34, 2553 (1999). https://doi.org/10.1023/A:1004688329674
  16. P. Antony and S. K. De, "Ionomeric polyblends of zinc salts of maleated EPDM rubber and poly(ethylene-co-acrylic acid). I. Effect of blend ratio", J. Appl. Polym. Sci., 71, 1247 (1999). https://doi.org/10.1002/(SICI)1097-4628(19990222)71:8<1247::AID-APP5>3.0.CO;2-W
  17. Antony, P. and De, S.K. Synergism in properties of ionomeric polyblends based on zinc salt of maleated high density polyethylene and carboxylated nitrile rubber. J. Appl. Polym. Sci., 70, 483 (1998). https://doi.org/10.1002/(SICI)1097-4628(19981017)70:3<483::AID-APP9>3.0.CO;2-J
  18. T. T. M. Phan, A. J. Denicola Jr, and L.S. Schadler, "Effect of addition of polyoxy propylenediamine on the morphology and mechanical properties of maleated polypropylene/maleated rubber blends", J. Appl. Polym. Sci., 68, 1451 (1998). https://doi.org/10.1002/(SICI)1097-4628(19980531)68:9<1451::AID-APP9>3.0.CO;2-A
  19. K. Chino and M. Ashiura, "Thermoreversible cross-linking rubber using supramolecular hydrogen-bonding networks", Macromolecules, 34, 9201 (2001). https://doi.org/10.1021/ma011253v
  20. K. Chino, M. Ashiura, and J. Natori, "Thermoreversible crosslinking rubber using supramolecular hydrogen bonding networks", Rubb. Chem. Technol., 75, 713 (2002). https://doi.org/10.5254/1.3544997
  21. C. X. Sun, M.A.J. van der Mee, J.G.P. Goossens, and M. van Duin, "Thermoreversible cross-linking of maleated ethylene/ propylene copolymers using hydrogen-bonding and ionic interactions", Macromolecules, 39, 3441 (2006). https://doi.org/10.1021/ma052691v
  22. Y.-W. Chang, J. K. Mishra, S. K. Kim, and D. K. Kim, "Effect of supramolecular hydrogen bonded network on the properties of maleated ethylene propylene diene rubber/maleated high density polyethylene blend based thermoplastic elastomer", Mater. Lett., 60, 3118 (2006). https://doi.org/10.1016/j.matlet.2006.02.055
  23. J. K. Mishra, Y.-W. Chang, D. K. Kim, and P. L. Nayak, "Heat shrinkable behavior of supramolecular hydrogen bonded maleated ethylene propylene diene rubber/ maleated high density polyethylene blend", Polym. Plast. Technol. Eng., 46: 585 (2007). https://doi.org/10.1080/03602550701298762
  24. L. E Alexander, "X-ray Diffraction in Polymer Science", Wiley Interscience, New York, 1969.
  25. N. B. Clothup, L. H. Daly, and S. E. Wibserley In Introduction to Infrared and Raman Spectroscopy, pp. 313-314, Academic Press Inc., New York, 1990.
  26. M.C. Choi, J. Y. Jung, and Y.-W. Chang, "Peroxide modification of nylon 12 elastomer", Elast. Compos., 48, 18 (2013). https://doi.org/10.7473/EC.2013.48.1.18