DOI QR코드

DOI QR Code

층상점토 충전 브롬화 이소부틸-이소프렌 검 나노복합체의 점착거동

Autohesion Behavior of Brominated-Isobutylene-Isoprene Gum Nanocomposites with Layered Clay

  • 맨사비스마르크 (전북대학교 고분자.나노공학과) ;
  • 김성진 (전북대학교 고분자.나노공학과) ;
  • 이대학 (전북대학교 고분자.나노공학과) ;
  • 김한길 (전북대학교 고분자.나노공학과) ;
  • 오종갑 (전북대학교 대학원 디자인제조공학과) ;
  • 나창운 (전북대학교 고분자.나노공학과)
  • Mensah, Bismark (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Sungjin (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Lee, Dae Hak (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Kim, Han Gil (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University) ;
  • Oh, Jong Gab (Department of Design and Manufacturing, Graduate School, Chonbuk National University) ;
  • Nah, Changwoon (BK21 Plus Haptic Polymer Composite Research Team, Department of Polymer-Nano Science and Technology, Chonbuk National University)
  • 투고 : 2014.02.10
  • 심사 : 2014.02.28
  • 발행 : 2014.03.31

초록

브롬화 이소부틸 이소프렌 (BIIR) 고무의 점착성에 미치는 나노점토(Cloisite 20A)의 영향을 조사하였다. 고무내 나노점토의 분산성은 SEM, TEM, XRD으로 분석하였다. 나노점토 충전 및 미충전 고무의 열적안정성은 TGA로 분석하였으며, 충전고무에서 열적안정성을 보였다. 또한 나노점토를 첨가하면 보강효과에 의해 고무의 강도가 증가하였다. 나노점토 첨가로 계면간 분자확산 정도는 감소할 것으로 판단되었지만, 본 연구에서 관찰된 분자확산에 의해 형성된 계면의 두께는 분자사슬간 엄킴현상을 유발하는데 충분하여 계면점착력이 증가하는 것으로 나타났다. 계면점착력 증가현상은 일정한 이상 (8 phr)의 나노점토가 첨가되었을 때 나타났다. 나노점토 첨가에 따른 표면특성의 변화를 조사하기 위해 접촉각 측정을 하였는데 큰 변화는 관찰되지 않았다.

The effect of nanoclay (Cloisite 20A) on the self-adhesion behavior of uncured brominated-isobutylene-isoprene rubber (BIIR) has been studied. The dispersion state of nanoclay into the rubber matrix was examined by SEM, TEM and XRD analysis. The thermal degradation behavior of the filled and unfilled samples was examined by TGA and improvement in the thermal stability of the nanocomposites occurred based on the weight loss (%) measurements. Also, addition of nanoclay enhanced the cohesive strength of the material by reinforcement action thereby reducing the degree of molecular diffusion across the interface of butyl rubber. However, the average depth of penetration of the inter-diffused chains was still adequate to form entanglement on either side of the interface, and thus offered greater resistance to peeling, resulting in high tack strength measurements. The improvement in tack strength was only achieved at critical nanoclay loading above 8 phr. Contact angle measurement was also made to examine the surface characteristics. There was no significant interfacial property change by employing the nanoclay.

키워드

참고문헌

  1. A. Aradian, E. Raphael, and P.-G. de Gennes, "Strengthening of a polymer interface : interdiffusion and crosslinking", Macromolecules, 33, 9444 (2000). https://doi.org/10.1021/ma0010581
  2. Y. H. Kim and R. P. Wool, "A theory of healing at a polymer- polymer interface", Macromolecules, 16, 1115 (1983). https://doi.org/10.1021/ma00241a013
  3. S. S. Voyutskii, "Autohesion and Adhesion of High Polymers", Interscience Publishers, New York, 1963, Chapters 1 and 2, pp. 5-59.
  4. G. R. Hamed, "Tack and Green Strength of Elastomeric Materials", Rubber Chem. Technol., 54, 576 (1981). https://doi.org/10.5254/1.3535821
  5. C. K. Rhee and J. C. Andries, "Factors Which Influence Autohesion of Elastomers", Rubber Chem. Technol., 54, 101 (1981). https://doi.org/10.5254/1.3535785
  6. G. R. Hamed and G. D. Roberts, "Comparison of the Effect of a Hydrocarbon Oil and a Terpene Tackifier on the Autohesion of Styrene-Butadiene Rubber", J. Adhes., 47, 95 (1994). https://doi.org/10.1080/00218469408027092
  7. A. K. Bhowmick, P. P. De and A.K. Bhattacharyya, "Adhesive tack and green strength of EPDM rubber", Polym. Eng. Sci., 27, 1195 (1987). https://doi.org/10.1002/pen.760271513
  8. K. D. Kumar, A. H. Tsou and A. K. Bhowmick, "Unique Behavior of Hydrocarbon Resin Tackifier on Unaged and Aged Tack of Brominated Isobutylene-co-p-methylstyrene (BIMS) Rubber", J. Adhes. Sci. Technol., 22, 2039 (2008). https://doi.org/10.1163/156856108X332552
  9. J. R. Beatty, "Tel-Tak: A Mechanical Method for Estimating Both Tackiness and Stickiness of Rubber Compounds", Rubber Chem. Technol., 42, 1040 (1969). https://doi.org/10.5254/1.3539277
  10. W. F Busse, J. M Lambert and R. B. Verdery, "Tackiness of GR‐S and Other Elastomers," J. Appl. Phys., 17, 376 (1946). https://doi.org/10.1063/1.1707726
  11. R. K. Beckwith, L. M. Welch, J. F. Nelson, A. L. Chaney, and E. A. McCracken, "Tack of Butyl and Natural Rubbers", Rubber Chem. Technol., 23, 933 (1950). https://doi.org/10.5254/1.3547098
  12. B. Kumar, P. P. De, S. K. De, D. G. Peiffer, and A. K. Bhowmick, "Tack and green strength of brominated isobutylene- co-p-methylstyrene and its blends", J. Adhes. Sci. Technol., 15, 1145 (2001). https://doi.org/10.1163/156856101317048671
  13. T. K. Bhaumik, B. R. Gupta, and A. K. Bhowmick, "Tack and green strength of filled blends of bromobutyl and EPDM rubbers", J. Adhes. Sci. Technol., 1, 227 (1987). https://doi.org/10.1163/156856187X00238
  14. R. A. Vaia and D. Lincoln, "Polymer Nanocomposites: Synthesis, Characterization and Modeling", R. Krishnamoorti, and R. A. Vaia, Eds.; ACS Symposium Series No. 804, American Chemical Society: Washington, DC,; Chapter 9, 102 (2000).
  15. S. S. Ray and M. Okamoto, "Polymer/layered silicate nanocomposites: a review from preparation to processing", Prog. Polym. Sci., 28, 1539 (2003). https://doi.org/10.1016/j.progpolymsci.2003.08.002
  16. M. Maiti, M. Bhattacharya, and A. K. Bhowmick, "Elastomer Nanocomposites", Rubber Chem. Technol., 81, 384 (2008). https://doi.org/10.5254/1.3548215
  17. S. Sadhu and A. K. Bhowmick, "Preparation and Properties of Nanocomposites Based on Acrylonitrile-Butadiene Rubber, Styrene-Butadiene Rubber, and Polybutadiene Rubber", J. Polym. Sci.; Polym. Phys., 42, 1573 (2004). https://doi.org/10.1002/polb.20036
  18. M. Maiti, and A. K. Bhowmick, "Structure and properties of some novel fluoroelastomer/clay nanocomposites with special reference to their interaction", J. Polym. Sci.; Polym. Phys., 44, 162 (2006). https://doi.org/10.1002/polb.20680
  19. M. Maiti and A. K. Bhowmick, "New fluoroelastomer nanocomposites from synthetic montmorillonite", Compos. Sci. Technol., 68, 1 (2008). https://doi.org/10.1016/j.compscitech.2007.05.042
  20. M. Bhattacharya and A. K. Bhowmick, "Polymer-filler interaction in nanocomposites: New interface area function to investigate swelling behavior and Young's modulus", Polymer, 49, 4808 (2008). https://doi.org/10.1016/j.polymer.2008.09.002
  21. M. Bhattacharya, M. Maiti, and A. K. Bhowmick, "Tailoring properties of styrene butadiene rubber nanocomposite by various nanofillers and their dispersion", Polym. Eng. Sci., 49, 81 (2009). https://doi.org/10.1002/pen.21224
  22. A. Choudhury, A. K Bhowmick, and C. Ong, "Novel role of polymer-solvent and clay-solvent interaction parameters on the thermal, mechanical and optical properties of polymer nanocomposites", Polymer, 50, 201 (2009). https://doi.org/10.1016/j.polymer.2008.10.044
  23. O. K. F Bussemaker, "Tack in Rubber", Rubber Chem. Technol., 37, 1178 (1964). https://doi.org/10.5254/1.3540398
  24. W. Hofmann, "Rubber Technology Handbook", Hanser Gardner Publications, 2000.
  25. S. Prager and M. Tirrell, "The Healing Process at Polymer-Polymer Interfaces", J. Chem. Phys., 75, 5194 (1981). https://doi.org/10.1063/1.441871
  26. R. J. Roe, D. D. Davis, and T. K. Kwei, "Mobility Of Polymer Segments Adsorbed On Solids As Studied By Pulsed NMR Technique", Bull. Am. Phys. Soc., 15, 308 (1970).
  27. C. Nah, J. Jose, J.-H. Ahn, Y.-S. Lee, and A. N. Gent, "Adhesion of carbon black to elastomers", Polym. Test., 31, 248 (2012). https://doi.org/10.1016/j.polymertesting.2011.11.007

피인용 문헌

  1. Preparation and Characterization of Rubber Blends for Industrial Tire Tread Fabrication vol.2018, pp.1687-9430, 2018, https://doi.org/10.1155/2018/2473286