DOI QR코드

DOI QR Code

Electrical and Optical Properties of Solution-Based Sb-Doped SnO2 Transparent Conductive Oxides Using Low-Temperature Process

저온 공정을 이용한 용액 기반 Sb-doped SnO2 투명 전도막의 전기적 및 광학적 특성

  • Koo, Bon-Ryul (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Ahn, Hyo-Jin (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 구본율 (서울과학기술대학교 신소재공학과) ;
  • 안효진 (서울과학기술대학교 신소재공학과)
  • Received : 2014.02.28
  • Accepted : 2014.03.17
  • Published : 2014.03.27

Abstract

Solution-based Sb-doped $SnO_2$ (ATO) transparent conductive oxides using a low-temperature process were fabricated by an electrospray technique followed by spin coating. We demonstrated their structural, chemical, morphological, electrical, and optical properties by means of X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy, atomic force microscopy, Hall effect measurement system, and UV-Vis spectrophotometry. In order to investigate optimum electrical and optical properties at low-temperature annealing, we systemically coated two layer, four layer, and six layers of ATO sol-solution using spin-coating on the electrosprayed ATO thin films. The resistivity and optical transmittance of the ATO thin films decreased as the thickness of ATO sol-layer increased. Then, the ATO thin films with two sol-layers exhibited superb figure of merit compared to the other samples. The performance improvement in a low temperature process ($300^{\circ}C$) can be explained by the effect of enhanced carrier concentration due to the improved densification of the ATO thin films causing the optimum sol-layer coating. Therefore, the solution-based ATO thin films prepared at $300^{\circ}C$C exhibited the superb electrical (${\sim}7.25{\times}10^{-3}{\Omega}{\cdot}cm$) and optical transmittance (~83.1 %) performances.

Keywords

References

  1. H. K. Kim, S. G. Lee and K. S. Yun, Sens. Actuators, A, 165, 2 (2011). https://doi.org/10.1016/j.sna.2009.12.031
  2. I. G. Lee and B. H. Noh, J. Kor. Powd. Met. Inst., 15, 450 (2008). https://doi.org/10.4150/KPMI.2008.15.6.450
  3. C. J. Brabec, Sol. Energy Mater. Sol. Cells, 83, 273 (2004). https://doi.org/10.1016/j.solmat.2004.02.030
  4. M. Eritt, C. May, K. Leo, M. Toerker and C. Radehaus, Thin Solid Films, 518, 3042 (2010). https://doi.org/10.1016/j.tsf.2009.09.188
  5. J. Meyer, P. Gorrn, S. Hamwi, H. -H. Johannes, T. Riedl and W. Kowalsky, Appl. Phys. Lett., 93, 073308 (2008). https://doi.org/10.1063/1.2975176
  6. E. K. Shokr, Semicond. Sci. Technol., 15, 247 (2000). https://doi.org/10.1088/0268-1242/15/3/303
  7. J. Kane, H. P. Schweizer and W. Kern, ECS J. Solid State Sci. Technol., 123, 270 (1976).
  8. X. Hao, J. Ma, D. Zhang, X. Xu, Y. Yang, H. Ma and S. Ai, Appl. Phys. A: Mater. Sci. Process., 75, 397 (2002). https://doi.org/10.1007/s003390100979
  9. R. M. Pasquarelli, D. S. Ginley and R. O'Hayre, Chem. Soc. Rev., 40, 5406 (2011). https://doi.org/10.1039/c1cs15065k
  10. D. Ganz, G. Gasparro, J. Otto, A. Reich, N. J. Arfsten and M. A. Aegerter, J. Mater. Sci. Lett., 16, 1233 (1997).
  11. D. Burgard, C. Goebbert and R. Nass, J. Sol-Gel Sci. Technol., 13, 789 (1998). https://doi.org/10.1023/A:1008682014444
  12. M. A. Aegerter, A. Reich, D. Ganz, G. Gasparro, J. Putz and T. Krajewski, J. Non-Cryst. Solids, 218, 123 (1997). https://doi.org/10.1016/S0022-3093(97)00134-8
  13. J. W. Lim, B. Y Jeong, H. G. Yoon, S. N. Lee and J. H. Kim, J. Nanosci. Nanotechnol., 12, 1675 (2012). https://doi.org/10.1166/jnn.2012.4622
  14. D. Zhang, L. Tao, Z. B Deng, J. B Zhang and L. Y. Chen, Mater. Chem. Phys., 100, 275 (2006). https://doi.org/10.1016/j.matchemphys.2005.12.043
  15. S. J. Jeon, J. J. Lee, J. T. Kim and S. M. Koo, J. Ceram. Process. Res., 7, 321 (2006).
  16. K. E. Haque, Int. J. Miner. Process., 57, 1 (1999). https://doi.org/10.1016/S0301-7516(99)00009-5
  17. J. Kong, H. M Deng, P. X. Yang and J. H. Chu, Mater. Chem. Phys., 114, 854 (2009). https://doi.org/10.1016/j.matchemphys.2008.10.049
  18. T. Krishnakumar, R. Jayaprakash, N. Pinna, A. R. Phani, M. Passacantando and S. Santucci, J. Phys. Chem. Solids, 70, 993 (2009). https://doi.org/10.1016/j.jpcs.2009.05.013
  19. P. S. Lee, Y. H. Lin, Y. S. Chang, J. M. Wu and H. C. Shih, Thin Solid Films, 519, 1749 (2010). https://doi.org/10.1016/j.tsf.2010.08.084
  20. H. R. An, C. Y. Kim, S. T. Oh, and H. J. Ahn, Ceram. Int., 40, 385 (2014). https://doi.org/10.1016/j.ceramint.2013.06.013
  21. S. U. Lee, W. S. Choi and B. Y Hong, Phys. Scr., T129, 312 (2007). https://doi.org/10.1088/0031-8949/2007/T129/069
  22. S. Calnan and A. N. Tiwari, Thin Solid Films, 518, 1839 (2010). https://doi.org/10.1016/j.tsf.2009.09.044
  23. K. Daoudi, C. S. Sandu, V. S. Teodorescu, C. Ghica, B. Canut, M. G. Blanchin, J. A. Roger, M. Oueslati and B. Bessais, Cryst. Eng., 5, 187 (2002). https://doi.org/10.1016/S1463-0184(02)00028-X
  24. J. Montero, J. Herrero and C. Guillen, Sol. Energy Mater. Sol. Cells, 94, 612 (2010). https://doi.org/10.1016/j.solmat.2009.12.008
  25. J Liu, A. W. Hains, J. D. Servaites M. A. Ratner and T. J. Marks, Chem. Mater, 21, 5258 (2009). https://doi.org/10.1021/cm902265n