Korean J. Math. **22** (2014), No. 1, pp. 29–36 http://dx.doi.org/10.11568/kjm.2014.22.1.29

ON THE MARTINGALE EXTENSION OF LIMITING DIFFUSION IN POPULATION GENETICS

WON CHOI

ABSTRACT. The limiting diffusion of special diploid model can be defined as a discrete generator for the rescaled Markov chain. Choi([2]) defined the operator of projection S_t on limiting diffusion and new measure $dQ = S_t dP$. and showed the martingale property on this operator and measure. Let P_{ρ} be the unique solution of the martingale problem for \mathcal{L}_0 starting at ρ and $\pi_1, \pi_2, \cdots, \pi_n$ the projection of E^n on x_1, x_2, \cdots, x_n . In this note we define

$$dQ_{\rho} = S_t dP_{\rho}$$

and show that Q_{ρ} solves the martingale problem for \mathcal{L}_{π} starting at ρ .

1. Introduction

Let E (a locally compact separable metric space) be the set of all possible allels and $\nu_0(\text{in }\mathcal{P}(E))$, the set of Borel probability measures on E) the distribution of the type of a new mutant. Suppose that N(apositive integer) is the diploid population size and $s(\mathbf{x})$ is the selection coefficient of allele \mathbf{x} .

Received July 26, 2013. Revised September 28, 2013. Accepted September 28, 2013.

²⁰¹⁰ Mathematics Subject Classification: 92D10, 60H30, 60G44.

Key words and phrases: Diploid model, Limiting diffusion, Martingale problem, Population genetics.

This research was supported by Incheon National University Research Grant, 2013-2014.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

We now consider the normal-selection model which define in W. Choi([1]). The type space E is unspecified. However, ν_0 and the function smust jointly satisfy the following condition; If X is a random variable with distribution ν_0 , then s(X) has the normal distribution with mean 0 and variance σ^2 . Furthermore, $\sigma = \sigma_0/2N$ for an appropriate constant σ_0 . There are therefore a number of possible choice for E, ν_0 , and s, including;

$$E = (0,1), \ \nu_0 = U(0,1), \ s(\mathbf{x}) = \sigma \Phi^{-1}(\mathbf{x}),$$

where Φ is the standard normal distribution function,

$$E = R, \ \nu_0 = N(0, \sigma^2), \ s(\mathbf{x}) = \mathbf{x},$$

and

$$E = R, \ \nu_0 = N(0, \sigma_0^2), \ s(\mathbf{x}) = \mathbf{x}/2N.$$

For each positive integer M, let ω_M be a positive, symmetric, bounded, Borel function on E^2 , let $R_M((p,q), dx \times dy)$ be an one-step transition function on $E^2 \times \mathcal{B}(E^2)$ satisfying

$$R_M((p,q), dx \times dy) = R_M((q,p), dy \times dx),$$

and $Q_M(p, dx)$ be an one-step transition function on $E \times \mathcal{B}(E)$.

Let N be the diploid population size. We consider M = 2N gametes and the mapping $\eta_M : E^M \to \mathcal{P}(E)$ by letting

$$\eta_M(p_1, p_2, \cdots, p_M) = \frac{1}{M} (\delta_{p_1} + \delta_{p_2} + \cdots + \delta_{p_M}).$$

Here $\delta_p \in \mathcal{P}(E)$ denotes the unit mass at $p \in E$. The state space for this model is

$$\mathcal{K}_M(E) = \eta_M(E^M).$$

Given $\mu \in \mathcal{P}(E)$, we define $\mu_1 \in \mathcal{P}(E^2)$ and $\mu_2, \mu_3 \in \mathcal{P}(E)$ by

$$\mu_1(dp \times dq) = \omega_M(p,q)\mu^2(dp \times dq)/\langle \omega_M, \mu^2 \rangle,$$

$$\mu_2(dx) = \int_{E^2} R_M((p,q), dx \times E)\mu_1(dp \times dq),$$

$$\mu_3(dx) = \int_E Q_M(p,dx)\mu_2(dp).$$

The Markov chain has one-step transition function $P_M(\mu, d\theta)$ on $\mathcal{K}_M(E) \times (\mathcal{K}_M(E))$ defined by

$$P_M(\mu, \cdot) = \int_{E^M} (\mu_3)^M (dp_1 \times dp_2 \times \dots \times dp_M) \delta_{\eta_M(p_1, p_2, \dots, p_M)}(\cdot).$$

Choi([1]) identified and characterized the limiting diffusion of this diploid model by defining discrete generator for the rescaled Markov chain. Also he defined the operator of projection S_t on limiting diffusion and new measure $dQ = S_t dP$, and showed the martingale property on this operator and measure. ([2]) Let P_{ρ} be the unique solution of the martingale problem for \mathcal{L}_0 starting at ρ and $\pi_1, \pi_2, \cdots, \pi_n$ the projections of E^n on x_1, x_2, \cdots, x_n . In this note we define

$$dQ_{\rho} = S_t dP_{\rho}$$

and show that Q_{ρ} solves the martingale problem for \mathcal{L}_{π} starting at ρ .

2. Main Results

We define the discrete generator \mathcal{L}_M for the *M*-the rescaled Markov chain and canonical coordinate process $\{\rho_t, t \geq 0\}$:

$$(\mathcal{L}_M \phi)(\rho_t) = M \int_{\mathcal{P}_M} (\phi(\nu_t) - \phi(\rho_t)) P_M(\rho_t, \nu_t)$$

where \mathcal{P}_M is given in the diploid models as described above.

We restrict our attention to test functions θ of the form

$$\theta(\nu_t) = \beta_1 \langle f_1, \nu_t \rangle \cdots \beta_k \langle f_k, \nu_t \rangle, \ \theta(\rho_t) = \langle f_1, \rho_t \rangle \cdots \langle f_k, \rho_t \rangle$$

where $f_1, \dots, f_k \in \mathcal{B}(E)$ and $\{\beta_i\}$ is a set of non-negative constants satisfying that $\sup_i \beta_i < +\infty$. Assume that "mutation or gene conversion rate" is

$$\sum_{k \in S} \beta_k \langle f_i, \rho_t \rangle - \beta_i - \beta_j \text{ for every } i < j,$$

in the diploid models as described above. This means the mutations or gene conversions occur with particular rate in case of i < j. See [3].

We start with;

LEMMA 1. Suppose that there exist a selection function σ on E^2 and bounded linear operator A, B on $\mathcal{B}(E)$ such that

$$\omega_M(p,q) = 1 + \frac{1}{M}\sigma(p,q) + o(\frac{1}{M}),$$

$$\int_S f(x)R_M((p,q), dx \times S) = f(p) + \frac{1}{M}(Bf)(p,q) + o(\frac{1}{M}),$$

$$\int_S f(x)Q_M(p,dx) = f(x) + \frac{1}{M}(Af)(p) + o(\frac{1}{M}).$$

Then there exist a_{f_i,f_j} , $b_{f_i} \in \mathcal{B}(\mathcal{P}(E))$ such that

$$\lim_{M \to \infty} (\mathcal{L}_M \theta)(\rho_t) = (\mathcal{L}_\pi \theta)(\rho_t) = \sum_{1 \le i \le j \le k} a_{f_i, f_j} F_{z_i z_j}(\langle \mathbf{f}, \rho_t \rangle) + \sum_{i=1}^k b_{f_i} F_{z_i}(\langle \mathbf{f}, \rho_t \rangle)$$

uniformly in $\rho_t \in \mathcal{K}_M(E)$, where F_{z_i} and $F_{z_i z_j}$ mean the partial derivative with respect to *i* and *i*, *j*, respectively. Here

$$\theta(\rho_t) = F(\langle f_1, \rho_t \rangle, \langle f_2, \rho_t \rangle, \cdots, \langle f_k, \rho_t \rangle) = F(\langle \mathbf{f}, \rho_t \rangle)$$
$$a_{f_i, f_j} = \beta_i \langle f_i f_j, \rho_t \rangle - \langle f_i, \rho_t \rangle \langle f_j, \rho_t \rangle (\sum_{k \in S} \beta_k \langle f_i, \rho_t \rangle - \beta_i - \beta_j)$$
$$b_{f_i} = \langle A f_i, \rho_t \rangle + \langle B f_i, \rho_t^2 \rangle + \langle (f_i \circ \pi) \sigma, \rho_t^2 \rangle - \langle f_i, \rho_t \rangle \langle \sigma, \rho_t^2 \rangle,$$

and π is the projection of E^2 .

Proof. See [1].

In particular, the set of possible alleles, known as the type space, is a locally compact, separable metric space E and the mutation operator A is given

$$Af = \frac{1}{2}\theta(\langle f, \nu_0 \rangle - f),$$

where $\theta > 0$.

Let $\pi_1, \pi_2, \dots, \pi_n$ be the projection of E^n on x_1, x_2, \dots, x_n -coordinate, respectively. Define

$$S_t^{\pi_x,\pi_x+\pi_y} = \exp\{\langle \pi_y, \rho_t \rangle - \langle \pi_y, \rho_0 \rangle - \int_0^t e^{-\langle \pi_y, \rho_s \rangle} \mathcal{L}_{\pi_x} e^{\langle \pi_y, \rho_s \rangle} ds\}$$

where $x, y = 1, 2, \dots, n, x \neq y$. For ρ , we denote by P_{ρ} the unique solution of the martingale problem for \mathcal{L}_0 (i.e., the distribution of the neutral model) starting at ρ_0 .

Theorem 2 allows us to define a mean one $\{\mathcal{F}_t\}$ -martingale.

THEOREM 2. Suppose $\{\mathcal{F}_t\}$ is corresponding filtration with respect to topology of uniform convergence on compact sets. For $0 < \delta < \delta_0$, there exists δ_0 such that

$$E^{P_{\rho}}\left[\frac{S_{t+\delta}^{0,\pi}}{S_{t}^{0,\pi}}|\mathcal{F}_{t}\right] = 1.$$

32

Proof. Define $\pi_K = (-K) \vee (\pi \wedge K)$, $K = 1, 2, \cdots, n$ and note that $\{S_t^{0,\pi_K}\}$ is mean-one martingale from [2]. Hence

$$E^{P_{\rho}}\left[\frac{S_{t+\delta}^{0,\pi_{K}}}{S_{t}^{0,\pi_{K}}}e^{\langle\pi_{K},\rho_{t}\rangle+\frac{1}{2}\theta\delta\langle\pi_{K},\nu_{0}\rangle}|\mathcal{F}_{t}\right]=e^{\langle\pi_{K},\rho_{t}\rangle+\frac{1}{2}\theta\delta\langle\pi_{K},\nu_{0}\rangle}.$$

But,

$$\exp\left(\langle \pi_K, \rho_t \rangle + \frac{1}{2}\theta \delta \langle \pi_K, \nu_0 \rangle\right) \leq \exp\left(\langle \pi_K, \rho_t \rangle + \frac{1}{2}\theta \int_t^{t+\delta} \langle \pi_K, \rho_s \rangle ds\right)$$
$$\leq \exp\left(\langle \pi_1, \rho_{t+\delta} \rangle + \frac{1}{2}\theta \int_t^{t+\delta} \langle \pi_1, \rho_s \rangle ds\right).$$

We apply the dominated convergence theorem to show that the right hand side of above inequality is integrable. Let $q = \frac{p}{p-1}$ and define $\delta_0 = 2p/\theta q$. By the Hölder and Jensen inequalities,

$$E^{P_{\rho}}\left[\exp\left(\langle \pi_{1}, \rho_{t+\delta} \rangle + \frac{1}{2}\theta \int_{t}^{t+\delta} \langle \pi_{1}, \rho_{s} \rangle ds\right)\right]$$

$$\leq (E^{P_{\rho}}\left[\exp(p\langle \pi_{1}, \rho_{t+\delta} \rangle)\right])^{1/p} (E^{P_{\rho}}\left[\exp\left(\frac{1}{2}\theta q \int_{t}^{t+\delta} \langle \pi_{1}, \rho_{s} \rangle ds\right)\right])^{1/q}$$

$$\leq E^{P_{\rho}}\left[\langle e^{p\pi_{1}}, \rho_{t+\delta} \rangle\right]^{1/p} \left(\frac{1}{\delta} \int_{t}^{t+\delta} E^{P_{\rho}}\left[\langle e^{\theta q \delta \pi_{1}/2}, \rho_{s} \rangle\right] ds\right)^{1/q}$$

Let $\{U(t)\}$ be the semigroup on $\mathcal{B}(E)$ with generator A. Since

$$E^{P_{\rho}}[\langle g, \rho_t \rangle] = \langle U(t)g, \rho \rangle \le \langle g, \rho \rangle \lor \langle g, \nu_0 \rangle$$

for $g \in \mathcal{B}(E)$, we have

$$E^{P_{\rho}}\left[\exp\left(\langle \pi_{1}, \rho_{t+\delta} \rangle + \frac{1}{2}\theta \int_{t}^{t+\delta} \langle \pi_{1}, \rho_{s} \rangle ds\right)\right]$$

$$\leq \left[\langle e^{p\pi_{1}}, \rho \rangle \lor \langle e^{p\pi_{1}}, \nu_{0} \rangle\right]^{1/p} \left[\langle e^{\theta q \delta \pi_{1}/2}, \rho \rangle \lor \langle e^{\theta q \delta \pi_{1}/2}, \nu_{0} \rangle\right]^{1/q}$$

$$\leq \langle e^{p\pi_{1}}, \rho \rangle \lor \langle e^{p\pi_{1}}, \nu_{0} \rangle$$

if $0 < \delta < \delta_0$, and the proof is complete.

Theorem 2 allows us to define Q_{ρ} by

$$dQ_{\rho} = S_t^{0,\pi} dP_{\rho}.$$

Choi([2]) proved that Q_{ρ}^{K} solves the martingale problem for $\mathcal{L}_{\pi_{K}}$ starting at ρ_{0} . In advance, we now show that Q_{ρ} solve the martingale problem for \mathcal{L}_{π} starting at ρ_{0} .

THEOREM 3. The measure Q_{ρ} is a solution of the $(E^n, \mathcal{L}_{\pi}, \rho_0)$ -martingale problem.

Proof. Define

$$M_t^{\pi} = \phi(\rho_t) - \phi(\rho_0) - \int_0^t (\mathcal{L}_{\pi}\phi)(\rho_s) ds$$

and

$$M_t^{\pi_K} = \phi(\rho_t) - \phi(\rho_0) - \int_0^t (\mathcal{L}_{\pi_K} \phi)(\rho_s) ds$$

for $\phi \in \mathcal{D}(\mathcal{L}_{\pi})$. Then $M_t^{\pi_K}$ is Q_{ρ}^K -martingale for Q_{ρ}^K from the result of [2] with π replaced by π_K and we have

$$E^{Q_{\rho}^{K}}[M_{t+\delta}^{\pi_{K}} - M_{t}^{\pi_{K}}|\mathcal{F}_{t}] = 0.$$

Hence

$$E^{P_{\rho}}[(M_{t+\delta}^{\pi_{K}} - M_{t}^{\pi_{K}})S_{t+\delta}^{0,\pi_{K}}|\mathcal{F}_{t}] = 0$$

and

$$E^{P_{\rho}}[(M_{t+\delta}^{\pi_{K}}-M_{t}^{\pi_{K}})\frac{S_{t+\delta}^{0,\pi_{K}}}{S_{t}^{0,\pi_{K}}}e^{\langle\pi_{K},\rho_{t}\rangle+\frac{1}{2}\theta\delta\langle\pi_{K},\nu_{0}\rangle}|\mathcal{F}_{t}]=0.$$

Note that the integrand in above equation is bounded by the argument used for Theorem 2. For such δ used at Theorem 2, we conclude that

$$E^{P_{\rho}}[(M_{t+\delta}^{\pi}-M_{t}^{\pi})\frac{S_{t+\delta}^{0,\pi}}{S_{t}^{0,\pi}}e^{\langle\pi,\rho_{t}\rangle+\frac{1}{2}\theta\delta\langle\pi,\nu_{0}\rangle}|\mathcal{F}_{t}]=0.$$

On the other hand,

$$E^{P_{\rho}}[(M_t^{\pi_K})^2 S_t^{0,\pi_K}] = E^{Q_{\rho}^K}[(M_t^{\pi_K})^2] = E^{Q_{\rho}^K}[\langle\langle M\pi_K\rangle\rangle_t] \le Ct$$

where $\langle \langle M\pi_K \rangle \rangle_t = \int_0^t \psi(\pi_s) ds$ is increasing process and C is a constant with

$$\psi(\pi_s) = \sum_{i,j=1}^k (\beta_i \langle f_i f_j, \rho_t \rangle - \langle f_i, \rho_t \rangle \langle f_j, \rho_t \rangle (\sum_k \beta_k \langle f_i, \rho_t \rangle - \beta_i - \beta_j)) F_{z_i z_j}(\langle \mathbf{f}, \rho_t \rangle) \le C.$$

On the martingale extension of limiting diffusion in population genetics 35

From the Fatou's lemma, we have

$$E^{P_{\rho}}[(M_t^{\pi})^2 S_t^{0,\pi}] \le Ct$$

and

and

$$E^{Q_{\rho}}[(M_t^{\pi})^2] \le Ct.$$

Therefore the integrands in below equations are integrable and we conclude that

$$E^{P_{\rho}}[(M_{t+\delta}^{\pi} - M_{t}^{\pi})S_{t+\delta}^{0,\pi}|\mathcal{F}_{t}] = 0$$
$$E^{Q_{\rho}^{K}}[M_{t+\delta}^{\pi} - M_{t}^{\pi}|\mathcal{F}_{t}] = 0.$$

By Theorem 3, we know that there exists a probability measure Q_{ρ} satisfying the following conditions ;

- (1) $Q_{\rho}(\rho(0) = \rho_0) = 1$ and
- (2) denoting $M_{\phi_1}(t) = \phi_1(\rho(t)) \int_0^t \mathcal{L}_\pi \phi_1(\rho(s)) ds$, $M_{\phi_1}(t)$ is a Q_{ρ} martingale.

Therefore we conclude with;

COROLLARY 4. Defining

$$\langle \phi_1, \phi_2 \rangle \equiv \mathcal{L}_{\pi}(\phi_1 \cdot \phi_2) - \phi_1 \mathcal{L}_{\pi} \phi_2 - \phi_2 \mathcal{L}_{\pi} \phi_1,$$

$$(M_{\phi_1}(t))^2 - \int_0^t \langle \phi_1, \phi_2 \rangle(\rho(s)) ds$$

is a Q_{ρ} -martingale.

Proof. Since the measure Q_{ρ} is a solution of L_{π} -martingale problem, the result directly follows from quadratic covariation process.

References

- W.Choi, On the limiting diffusion of special diploid model in population genetics, Bull. Korean Math. Soc. 42 (2) (2005), 397–404.
- W.Choi, On the martingale property of limiting diffusion in special diploid model, J. Appl. Math. info. **31** (1) (2013), 241–246.
- [3] A.Shimizu, Stationary distribution of a diffusion process taking values in probability distributions on the partitions, Proceedings of a Workshop held in Nagoya, (1985), 100-114.

Won Choi Department of Mathematics Incheon National University Incheon 406-772, Korea *E-mail*: choiwon@incheon.ac.kr