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PARTS FORMULAS INVOLVING CONDITIONAL

INTEGRAL TRANSFORMS ON FUNCTION SPACE

Bong Jin Kim and Byoung Soo Kim

Abstract. We obtain a formula for the conditional Wiener integral
of the first variation of functionals and establish several integration
by parts formulas of conditional Wiener integrals of functionals on a
function space. We then apply these results to obtain various inte-
gration by parts formulas involving conditional integral transforms
and conditional convolution products on the function space.

1. Definitions and preliminaries

In a unifying paper [11], Lee defined an integral transform Fα,β of
analytic functionals on an abstract Wiener space. For certain values
of the parameters α and β and for certain classes of functionals, the
Fourier-Wiener transform [2], the Fourier-Feynman transform [4] and the
Gauss transform are special cases of the integral transform Fα,β. In [8],
the authors established various integration by parts formulas involving
integral transforms of functionals on a function space. Chang and Skoug
[6], established the formula for the conditional analytic Feynman integral
of the first variation of functionals on Wiener space and obtained several
integration by parts formulas for conditional analytic Feynman integrals
and conditional Fourier-Feynman transforms.

In this paper we obtain a formula for the conditional Wiener inte-

gral of the first variation of functionals of the form F (x) = f(〈~θ, x〉),
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where 〈θ, x〉 denotes the Paley-Wiener-Zygmund(PWZ) stochastic in-

tegral
∫ T
0
θ(t) dx(t) and establish several integration by parts formulas

of conditional Wiener integrals of functionals on a function space. We
then apply these results to obtain various integration by parts formu-
las involving conditional integral transforms and conditional convolution
products on the function space.

Let C0[0, T ] denote Wiener space; that is the space of all R-valued
continuous functions x(t) on [0, T ] with x(0) = 0. LetM denote the class
of all Wiener measurable subsets of C0[0, T ] and let m denote Wiener
measure. Then (C0[0, T ],M,m) is a complete measure space and we
denote the Wiener integral of a Wiener integrable functional F by

(1.1) Ex[F (x)] =

∫
C0[0,T ]

F (x)m(dx).

Let K = K[0, T ] be the space of all C-valued continuous functions
defined on [0, T ] which vanish at t = 0 and let α and β be nonzero
complex numbers.

Now we introduce the definitions of integral transform Fα,β, convolu-
tion product (F ∗ G)α and first variation δF for functionals defined on
K. The main focus of [9] was to establish various relationships holding
among Fα,βF , Fα,βG, (F ∗G)α, δF and δG.

Definition 1.1. Let F be a functional defined on K. Then the
integral transform Fα,βF of F is defined by

(1.2) Fα,βF (y) ≡ Ex[F (αx+ βy)], y ∈ K
if it exists [9, 11].

Definition 1.2. Let F and G be functionals defined on K. Then
the convolution product (F ∗G)α of F and G is defined by

(1.3) (F ∗G)α(y) ≡ Ex

[
F
(y + αx√

2

)
G
(y − αx√

2

)]
, y ∈ K

if it exists [7, 9, 13, 15].

Definition 1.3. Let F be a functional defined on K and let w ∈ K.
Then the first variation δF of F is defined by

(1.4) δF (y|w) ≡ ∂

∂t
F (y + tw)|t=0, y ∈ K

if it exists [1, 5, 9, 13].
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Let X : C0[0, T ] → R be a Wiener measurable functional and let
F : C0[0, T ] → C be a Wiener integrable functional. Then for η ∈
R, Ex[F‖X](η) denotes the conditional Wiener integral of F given X
[6, 12, 16]. In [12], Park and Skoug gave a formula for expressing condi-
tional Wiener integrals in terms of ordinary(i.e., non-conditional) Wiener
integrals; namely that for X(x) = x(T ),

Ex[F (x)‖X(x)](η) = Ex[F (x(·)− ·
T
x(T ) +

·
T
η)]

=

∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)
m(dx).

(1.5)

For a functional F defined on K we define the conditional integral
transform Fα,β(F‖X)(y, η) of F given X by the formula

(1.6) Fα,β(F‖X)(y, η) = Ex[F (αx+ βy)‖X(x)](η)

for y ∈ K and η ∈ R if it exists.
Similarly for functionals F and G defined on K, we define the condi-

tional convolution product ((F ∗ G)α‖X)(y, η) of (F ∗ G)α given X by
the formula

(1.7) ((F ∗G)α‖X)(y, η) = Ex[F
(y + αx√

2

)
G
(y − αx√

2

)
||X(x)](η)

for y ∈ K and η ∈ R if it exists.
Next we describe the class of functionals that we work with in this

paper. Let {θn} be a complete orthonormal set of R-valued functions
in L2[0, T ]. Furthermore assume that each θj is of bounded variation
on [0, T ]. Then for each y ∈ K and j ∈ {1, 2, . . .}, the PWZ integral

〈θj, y〉 ≡
∫ T
0
θj(t) dy(t) exists.

For 0 ≤ σ < 1 let Eσ be the space of all functionals F : K → C of
the form

(1.8) F (y) = f(〈θ1, y〉, . . . , 〈θn, y〉) = f(〈~θ, y〉)

for some positive integer n, where f(~λ) is an entire function of n complex
variables λ1, . . . , λn of exponential type; that is to say

(1.9) |f(~λ)| ≤ AF exp{BF |~λ|1+σ}

for some positive constants AF and BF , where |~λ|1+σ =
n∑
j=1

|λj|1+σ.

In addition we use the notation Fj(y) = fj(〈~θ, y〉) where fj(~λ) =
∂
∂λj
fj(λ1, . . . , λn) for j = 1, . . . , n.
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In [10], the current authors and Skoug showed that for all F and G in
Eσ, Fα,β(F‖X) and ((F ∗G)α‖X) exist and belong to Eσ for all nonzero
complex numbers α and β and the condition by X(x) = x(T ) while
δF (y|w) exists and belongs to Eσ for all y and w in K. For related work
see [2, 7, 9, 11, 15] and for a detailed survey of previous work see [14].

2. Parts formulas involving conditional Wiener integral

We begin this section by stating the following well-known Cameron-
Martin’s translation theorem [3].

Theorem 2.1. Let φ ∈ C([0, T ])∩BV ([0, T ]), and x0(t) ≡
∫ t
0
φ(s) ds.

Then for any Wiener measurable function F (x), F (x + x0) is Wiener
measurable and we have

∫
C0[0,T ]

F (x+ x0)m(dx)

= exp
{
−1

2

∫ T

0

[x′0(t)]
2 dt
}∫

C0[0,T ]

F (x) exp
{∫ T

0

x′0(t) dx(t)
}
m(dx).

(2.1)

In [3], we see that the restriction on x′0 may be weakened to x′0 ∈
L2[0, T ] provided that we interpret

∫ T
0
x′0(t) dx(t) in the sense of PWZ

integral.
Let

A = {w ∈ C0[0, T ] : w is absolutely continious on [0, T ]

with w′ ∈ L2[0, T ]}.

We note that if we choose z ∈ L2[0, T ] and define w(t) =
∫ t
0
z(s) ds for

t ∈ [0, T ], then w is an element of A, w′ = z a.e. on [0, T ], and for all

v ∈ L2[0, T ], 〈v, w〉 = (v, w′) = (v, z) where (v, z) =
∫ T
0
v(s)z(s) ds.

Our first result is a fundamental theorem which plays a key role
throughout this paper. In this theorem the conditional Wiener inte-
gral of the first variation of a functional F is expressed in terms of the
ordinary (that is, non conditional) Wiener integral of F multiplied by a
linear factor. Furthermore it can be expressed as a sum of conditional
Wiener integrals.
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Theorem 2.2. Let F ∈ Eσ be given by (1.8) and w ∈ A, then
(2.2)

Ex
[
δF (x|w)‖X

]
(η) =

∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′, x〉m(dx).

Also both sides of (2.2) are given by the formula

Ex
[
F (x)〈w′, x〉‖X

]
(η) + T (w′, w′

0)Ex
[
δF (x|w0)‖X

]
(η)

− η(w′, w′
0)Ex

[
F (x)‖X

]
(η)

(2.3)

where w0(t) = t
T
.

Proof. In [10], we can see that for F ∈ Eσ and w ∈ A,∫
C0[0,T ]

∣∣ ∂
∂k
F
(
x(·)− ·

T
x(T ) +

·
T
η + kw(·)

)
|k=0

∣∣m(dx)

≤
n∑
j=1

∣∣(θj, w′)
∣∣ ∫

C0[0,T ]

∣∣fj(〈~θ, x(·)− ·
T
x(T ) +

·
T
η〉
∣∣m(dx) <∞.

(2.4)

Then using (1.4) and (1.5) we see that

Ex
[
δF (x|w)‖X

]
(η)

=

∫
C0[0,T ]

∂

∂k
F
(
x(·)− ·

T
x(T ) +

·
T
η + kw(·)

)
|k=0m(dx)

=
∂

∂k

(∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η + kw(·)

)
m(dx)

)∣∣∣
k=0

.

Equation (2.4) justifies the second equality, interchange of differentiation
and integration, in the above equation. Moreover by (2.1)

Ex
[
δF (x|w)‖X

]
(η)

=
∂

∂k

[
exp
{
−k

2

2
‖w′‖2

}
∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)

exp{k〈w′, x〉}m(dx)
]∣∣∣
k=0



62 B.J. Kim and B.S. Kim

which is equal to the right hand side of (2.2). Furthermore we have∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′, x〉m(dx)

=

∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′, x(·)− ·

T
x(T ) +

·
T
η〉m(dx)

+

∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′,

·
T
x(T )〉m(dx)

−
∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′,

·
T
η〉m(dx).

Now it is easy to see that, by (1.5), the last expression is equal to (2.3)
and this completes the proof.

Our first corollary of Theorem 2.2 follows from the equation (2.3) and
yields a formula for the conditional integral of F multiplied by a linear
factor 〈w′, x〉.

Corollary 2.3. Let w, w0 and F be as in Theorem 2.2 above. Then
we have

Ex
[
F (x)〈w′, x〉‖X

]
(η)

= Ex
[
δF (x|w)‖X

]
(η)− T (w′, w′

0)Ex
[
δF (x|w0)‖X

]
(η)

+ η(w′, w′
0)Ex

[
F (x)‖X

]
(η).

(2.5)

Our next corollary of Theorem 2.2 is a formula for the conditional
integral of F multiplied by two linear factors 〈w′

1, x〉 and 〈w′
2, x〉.

Corollary 2.4. Let w1, w2 be elements of A, and F ∈ Eσ be given
by (1.8). Then we have

Ex
[
F (x)〈w′

2, x〉〈w′
1, x〉‖X

]
(η)

= Ex
[
(w′

1, w
′
2)F (x) + 〈w′

2, x〉δF (x|w)‖X
]
(η)

− T (w′
1, w

′
0)Ex

[
(w′

0, w
′
2)F (x) + δF (x|w0)〈w′

2, x〉‖X
]
(η)

+ η(w′
1, w

′
0)Ex

[
F (x)〈w′

2, x〉‖X
]
(η).

(2.6)

Proof. Let G(x) = F (x)〈w′
2, x〉, then we have

δG(x|w1) = F (x)(w′
2, w

′
1) + δF (x|w1)〈w′

2, x〉.

Now equation (2.6) follows directly from equation (2.5).
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In our next theorem we express the conditional Wiener integral of the
product of functionals in Eσ in terms of the Wiener integral and obtain
an integration by parts formula for the functionals.

Theorem 2.5. Let F and G ∈ Eσ be given by (1.8) with correspond-
ing entire functions f and g respectively. Then for w ∈ A, we have the
following

Ex
[
F (x)δG(x|w) + δF (x|w)G(x)‖X

]
(η)

=

∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)

G
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′, x〉m(dx).

(2.7)

Also both sides of (2.7) are given by the formula

Ex
[
F (x)G(x)〈w′, x〉‖X

]
(η)

+ T (w′, w0
′)Ex

[
F (x)δG(x|w0) + δF (x|w0)G(x)‖X

]
(η)

− η(w′, w0
′)Ex

[
F (x)G(x)‖X

]
(η)

(2.8)

where w0(t) = t
T
.

Proof. For H(x) = F (x)G(x), we have

δH(x|w) = F (x)δG(x|w) + δF (x|w)G(x).

Then equations (2.7) and (2.8) follow from equations (2.2) and (2.3),
respectively.

By choosing F = G in Theorem 2.5, we have corollary.

Corollary 2.6. Let F ∈ Eσ be given by (1.8) and w ∈ A, then we
have

Ex
[
F (x)δF (x|w)‖X

]
(η)

=
1

2

∫
C0[0,T ]

[
F
(
x(·)− ·

T
x(T ) +

·
T
η
)]2〈w′, x〉m(dx).

(2.9)

Also both sides of (2.9) are given by the formula

1

2
Ex
[
[F (x)]2〈w′, x〉‖X

]
(η) + T (w′, w′

0)Ex
[
F (x)δF (x|w0)‖X

]
(η)

− η

2
(w′, w′

0)Ex
[
[F (x)]2‖X

]
(η)

(2.10)

where w0(t) = t
T
.
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If F ∈ Eσ, then δF (x|w1) belongs to Eσ [10]. Thus if we replace G(x)
with δF (x|w1) in Theorem 2.5 we have the following corollary.

Corollary 2.7. Let F ∈ Eσ be given by (1.8). Then for each
w1, w2 ∈ A, we have

E
[
F (x)δ2F (·|w1)(x|w2) + δF (x|w2)δF (x|w1)‖X

]
(η)

=

∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)

δF
(
x(·)− ·

T
x(T ) +

·
T
η|w1

)
〈w′

2, x〉m(dx).

(2.11)

Also both sides of (2.11) are given by the formula

Ex
[
F (x)δF (x|w1)〈w′

2, x〉‖X
]
(η)

+ T (w′
2, w

′
0)Ex

[
F (x)δ2F (·|w1)(x|w0) + δF (x|w0)δF (x|w1)‖X

]
(η)

− η(w′
2, w

′
0)Ex

[
F (x)δF (x|w1)‖X

]
(η)

(2.12)

where w0(t) = t
T
.

3. Additional results

In this section we obtain the various integration by parts formulas
involving conditional integral transforms and conditional convolution
products.

Since G belongs to Eσ, Fα,β(G‖X) also belongs to Eσ [10] and so
we have the following various formulas for conditional Wiener integrals
and the integration by parts formulas involving integral transforms and
conditional integral transforms. Furthermore we can obtain the formu-
las involving conditional integral transform of a conditional convolution
products.

Formula 3.1. Replacing G(x) with Fα,βG(x) in Theorem 2.5 yields

Ex
[
F (x)δFα,βG(x|w) + δF (x|w)Fα,βG(x)‖X

]
(η)

=

∫
C0[0,T ]

F
(
x(·)− ·

T
x(T ) +

·
T
η
)

Fα,βG
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′, x〉m(dx).

(3.1)
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Also both sides of (3.1) are given by the formula

Ex
[
F (x)Fα,βG(x)〈w′, x〉‖X

]
(η)

+ T (w′, w′
0)Ex

[
F (x)δFα,βG(x|w0) + δF (x|w0)Fα,βG(x)‖X

]
(η)

− η(w′, w′
0)Ex

[
F (x)G(x)‖X

]
(η)

(3.2)

where w0(t) = t
T

.

Formula 3.2. Replacing F (x) and G(x) by Fα,βF (x) and Fα,βG(x),
respectively in Theorem 2.5 yields

Ex
[
Fα,βF (x)δFα,βG(x|w) + δFα,βF (x|w)Fα,βG(x)‖X

]
(η)

=

∫
C0[0,T ]

Fα,βF
(
x(·)− ·

T
x(T ) +

·
T
η
)

Fα,βG
(
x(·)− ·

T
x(T ) +

·
T
η
)
〈w′, x〉m(dx).

(3.3)

Also both sides of (3.3) are given by the formula

Ex
[
Fα,βF (x)Fα,βG(x)〈w′, x〉‖X

]
(η)

+ T (w′, w0
′)Ex

[
Fα,βF (x)δFα,βG(x|w0)

+ δFα,βF (x|w0)Fα,βG(x)‖X
]
(η)

− η(w′, w′
0)Ex

[
Fα,βF (x)Fα,βG(x)‖X

]
(η)

(3.4)

where w0(t) = t
T

.

Formula 3.3. Applying Theorem 2.5 to the product of conditional
integral transforms of F and G yields

Ex
[
Fα,β(F‖X)(x, η1)δFα,β(G‖X)(x|w1, η2)

+ δFα,β(F‖X)(x|w1, η1)Fα,β(G‖X)(x, η2)‖X
]
(η3)

=

∫
C0[0,T ]

Fα,β(F‖X)
(
x(·)− ·

T
x(T ) +

·
T
η3, η1

)
Fα,β(G‖X)

(
x(·)− ·

T
x(T ) +

·
T
η3, η2

)
〈w′

1, x〉m(dx).

(3.5)
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Also both sides of (3.5) are given by the formula

Ex
[
Fα,β(F‖X)(x, η1)Fα,β(G‖X)(x, η2)〈w′

1, x〉‖X
]
(η3)

+ T (w′
1, w

′
0)Ex

[
Fα,β(F‖X)(x, η1)δFα,β(G‖X)(x|w0, η2)

+ δFα,β(F‖X)(x|w0, η1)Fα,β(G‖X)(x, η2)‖X
]
(η3)

− η3(w′, w′
0)Ex

[
Fα,β(F‖X)(x, η1)Fα,β(G‖X)(x, η2)‖X

]
(η3)

(3.6)

where w0(t) = t
T

.

Proof. Since the first variation satisfies the Leibnitz rule, that is,
δ(PQ)(x|w1) = P (x)δQ(x|w1) + δP (x|w1)Q(x), we have

Ex
[
δ
(
Fα,β(F‖X)(·, η1)Fα,β(G‖X)(·, η2)

)
(x|w0)‖X

]
(η3)

= Ex
[
Fα,β(F‖X)(x, η1)δFα,β(G‖X)(x|w0, η2)

+ δFα,β(F‖X)(x|w0, η1)Fα,β(G‖X)(x, η2)‖X
]
(η3).

Applying Theorem 2.5 with

h(·; η1, η2) ≡ Fα,β(F‖X)(·, η1)Fα,β(G‖X)(·, η2),
we have the formulas (3.5) and (3.6).

Formula 3.4. ChoosingG(x) to be identically equal to one on C0[0, T ]
in (3.5) and (3.6) yields

Ex
[
δFα,β(F‖X)(x|w1, η1)‖X

]
(η3)

=

∫
C0[0,T ]

Fα,β(F‖X)
(
x(·)− ·

T
x(T ) +

·
T
η3, η1

)
〈w′

1, x〉m(dx).
(3.7)

Also both sides of (3.7) are given by the formula

Ex
[
Fα,β(F‖X)(x, η1)〈w′

1, x〉‖X
]
(η3)

+ T (w′
1, w0

′)Ex
[
Fα,β(F‖X)(x, η1)δFα,β(G‖X)(x|w0, η2)

− η3(w′
1, w0

′)Ex
[
Fα,β(F‖X)(x, η1)‖X

]
(η3)

(3.8)

where w0(t) = t
T

.

Formula 3.5. Choosing G(x) = F (x) in Formula 3.3 yields

Ex
[
Fα,β(F‖X)(x, η1)δFα,β(F‖X)(x|w1, η1)‖X

]
(η3)

=
1

2

∫
C0[0,T ]

[
Fα,β(F‖X)

(
x(·)− ·

T
x(T ) +

·
T
η3, η1

)]2
〈w′

1, x〉m(dx).

(3.9)
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Also both sides of (3.9) are given by the formula

1

2
Ex
[(
Fα,β(F‖X)(x, η1)

)2〈w′
1, x〉‖X

]
(η3)

+ T (w′
1, w

′
0)Ex

[
Fα,β(F‖X)(x, η1)δFα,β(F‖X)(x|w0, η1)‖X

]
(η3)

− 1

2
η3(w

′, w′
0)Ex

[(
Fα,β(F‖X)(x, η1)

)2‖X](η3)
(3.10)

where w0(t) = t
T

.

In our final formula we express the conditional Wiener integral of
the product of the first variation of conditional integral transform and
conditional integral transform as the sum of Wiener integrals involving
conditional integral transform of a conditional convolution products of
the functionals.

In [10], we see that

Fα,β
(
((F ∗G)α‖X)(·, η1)‖X

)
(x, η2)

= Fα,β(F‖X)
( x√

2
,
η1 + η2√

2

)
Fα,β(G‖X)

( x√
2
,
η2 − η1√

2

)
.

Taking the first variation of the last expression and applying Theorem
2.2, we have the following formula.

Formula 3.6. Applying Theorem 2.5 to Fα,β(F ∗G)α yields the for-
mula

Ex

[
δFα,β(F‖X)

(
·, η1 + η2√

2

)( x√
2
| w1√

2

)
Fα,β(G‖X)

( x√
2
,
η2 − η1√

2

)
+ Fα,β(F‖X)

( x√
2
,
η1 + η1√

2

)
δFα,β(G‖X)

(
·, η2 − η1√

2

)( x√
2
| w1√

2

)
‖X
]
(η3)

=

∫
C0[0,T ]

Fα,β((F ∗G)α‖X)
(
x(·)− ·

T
x(T ) +

·
T
η2, η1

)
〈w′

1, x〉m(dx).

(3.11)
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Also both sides of (3.11) are given by the formula

Ex

[
Fα,β

(
((F ∗G)α‖X)(·, η1)‖X

)
(x, η2)〈w′

1, x〉‖X
]
(η3)

+ T (w′
1, w

′
0)Ex

[
δ
(
Fα,β

(
((F ∗G)α‖X)

)
(·, η1)‖X

)
(x|w0)‖X

]
(η3)

− η3(w′
1, w

′
0)Ex

[
Fα,β

(
((F ∗G)α‖X)

)
(·, η1)(x, eta2)‖X

]
(η3)

(3.12)

where w0(t) = t
T

.
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