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WEAK CONVERGENCE FOR MULTIPLE STOCHASTIC

INTEGRALS IN SKOROHOD SPACE

Yoon Tae Kim

Abstract. By using the multidimensional normal approximation
of functionals of Gaussian fields, we prove that functionals of Gauss-
ian fields, as functions of t, converge weakly to a standard Brown-
ian motion. As an application, we consider the convergence of the
Stratonovich-type Riemann sums, as a function of t, of fractional
Brownian motion with Hurst parameter H = 1/4.

1. Introduction

Let u(t, x) denote the solution to the stochastic heat equation

ut =
1

2
uxx + Ẇ (t, x), with initial conditions u(0, x) = 0,

where Ẇ is a space-time white noise on [0,∞) × R. Then the solution
u(t, x) is given by

u(t, x) =

∫
[0,t]×R

p(t− r, x− y)W (dr × dy),
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where p(t, x) is the heat kernel

p(t, x) =
1√
2πt

e−
x2

2t .

For fixed x ∈ R, let us set F (t) = u(t, x). In [7], author studies the
convergence of the sequence Jn(t) of the following Stratonovich-type
Riemann sums:

(1) Jn(t) =

[nt/2]∑
j=1

F
(2j − 1

n

)[
F
(2j

n

)
− F

(2j − 2

n

)]
.

In this paper, we extend the above problem (1) to the sequence Fn
belonging to the qth Wiener chaos. For this, we use central limit the-
orems of multiple stochastic integrals, being the recent results proved
by using the techniques of Malliavin calculus (see [4], [5] and [4]). The
purpose of this paper is to study the convergence in distribution of a
sequence of random functions of the form Fn = Iq(fn), where Iq is the
multiple stochastic integrals, by using Theorem 3.1. Here Iq(fn)(ω) is
a function in in the Skorohod space D = D([0, 1]) and Iq(fn)(t) is a
random variable.

As an application, we consider the convergence of the sequence In(t)
of the following Stratonovich-type Riemann sums:

In(t) =

[nt/2]∑
j=1

BH
(2j − 1

n

)[
BH
(2j

n

)
−BH

(2j − 2

n

)]
,

where BH is a fractional Brownian motion with Hurst parameter H =
1/4. That is, let B be a standard Brownian motion independent of BH .
The sequence In weakly converges to I in the Skorohod space D, where

(2) I =
1

2
(BH)2 − σ

2
B, σ2 = 2 +

∞∑
i=0

(−1)i
(

2
√
i−
√
i− 1−

√
i+ 1

)2
.

2. Preliminaries

In this section, we briefly review some basic facts about Malliavin
calculus for Gaussian processes. For a more detailed reference, see [3].
Suppose that H is a real separable Hilbert space with scalar product
denoted by 〈·, ·〉H. Let X = {X(h), h ∈ H} be an isonormal Gaussian
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process, that is a centered Gaussian family of random variables such that
E[X(h)X(g)] = 〈h, g〉H. If X = BH , then

E[BH(t)BH(s)] = 〈1[0,s],1[0,t]〉H =
1

2

(
t2H + s2H − |t− s|2H

)
.

For every q ≥ 1, let Hq be the qth Wiener chaos of X, that is the closed
linear subspace of L2(Ω) generated by {Hq(X(h)) : h ∈ H, ‖h‖H = 1},
where Hq is the nth Hermite polynomial. We define a linear isometric
mapping Iq : H�q → Hq by Iq(h

⊗q) = q!Hq(X(h)), where H�n is the
symmetric tensor product. The following duality formula holds

(3) E[FIq(h)] = E
[
〈DqF, h〉H⊗q

]
,

for any element h ∈ H�q and any random variable F ∈ Dq,2. Here Dq,2

is the closure of the set of smooth random variables with respect to the
norm

‖F‖2q,2 = E[F 2] +

q∑
k=1

E
[
‖DkF‖2H⊗k

]
,

where Dk is the iterative Malliavin derivative. The linear isometric map-
ping Iq satisfies Iq(f) = Iqf̃) and

(4) E[Ip(f)Iq(g)] =

{
0 if p 6= q

p!〈f̃ , g̃〉H⊗p if p = q,

where f̃ denotes the symmetrization of f .
If f ∈ H�p, the Malliavin derivative of the multiple stochastic inte-

grals is given by

(5) DzIq(fq) = qIq−1(fq(·, z)) for z ∈ [0, 1].

Let {el, l ≥ 1} be a complete orthonormal system in H.
If f ∈ H�p and g ∈ H�q, the contraction f ⊗r g, 1 ≤ r ≤ p∧ q, is the

element of H⊗(p+q−2r) defined by

(6) f ⊗r g =
∞∑

l1,··· ,lr=1

〈f, el1 ⊗ · · · ⊗ elr〉H⊗r ⊗ 〈g, el1 ⊗ · · · ⊗ elr〉H⊗r .

Notice that the tensor product f⊗g and the contraction f⊗r g, 1 ≤ r ≤
p∧ q, are not necessarily symmetric even though f and g are symmetric.
We will denote their symmetrizations by f⊗̃g and f⊗̃rg, respectively.
The following formula for the product of the multiple stochastic integrals
will be frequently used to prove the main result in this paper (see [3])
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Proposition 2.1. Let f ∈ H�p and g ∈ H�q be two symmetric
functions. Then

(7) Ip(f)Iq(g) =

p∧q∑
r=0

r!

(
p

r

)(
q

r

)
Ip+q−2r(f ⊗r g).

3. Main results

Let us recall the following result in [2], which is a collection of some
of the results contained in [4] and [6].

Theorem 3.1. Fix d ≥ 2 and let Σ = (κi,j)i,j=1,...,d be a d×d positive
definite matrix. Fix integers 1 ≤ q1 ≤ · · · ≤ qd. For any n ≥ 1 and

i = 1, . . . , d, f
(n)
i ∈ H�qi . Assume that

Fn = (Iq1(f
(n)
1 ), . . . , Iqd(f

(n)
d )), n ≥ 1,

is such that

lim
n→∞

E[Iqi(f
(n)
i )Iqj(f

(n)
j )] = κi,j, 1 ≤ i, j ≤ d.

Then the followings are equivalent:

(i) For every 1 ≤ i ≤ d, the sequence {Iqi(f
(n)
i ), n ≥ 1} converges to a

normal distribution N(0, κi,i).

(ii) For every 1 ≤ i ≤ d, limn→∞ E[(Iqi(f
(n)
i ))4] = 3κ2i,i.

(iii) For every 1 ≤ i ≤ d and every 1 ≤ r ≤ qi − 1,

lim
n→∞

‖f (n)
i ⊗r f

(n)
i ‖H⊗2(qi−r) = 0.

(iv) The random vector Fn converges in distribution to a d-dimensional
Gaussian vector Nd(0,Σ).

We consider the Skorohod space D = D([0, 1]).

Theorem 3.2. Suppose that for t, s ∈ [0, 1],

(8) lim
n→∞

E[Iq(fn(t))Iq(fn(s))] = t ∧ s,

where fn(t) ∈ H�q for each t ∈ [0, 1]. For fixed t ∈ [0, 1], the sequence
{Iq(fn(t)), n ≥ 1} converges to a normal distributionN (0, t). We further
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assume that for p = 1, . . . , q,

‖(fn(t)− fn(t1))⊗q−p (fn(t)− fn(t1))‖H�2p(9)

×‖(fn(t2)− fn(t))⊗q−p (fn(t)− fn(t1))‖H�2p

≤ cp[F (t2)− F (t1)]
ϑ

for t1 ≤ t ≤ t2 and n ≥ 1, where ϑ > 1, and F is a nondecreasing,
continuous function on [0, 1]. Then we have

(10) Iq(fn)
D→ B,

where B is a standard Brownian motion on [0, 1]

Proof. We first show that the finite-dimensional distributions of Iq(fn)
converge to those of B. For any t1, t2, . . . , tk ∈ [0, 1], k ≥ 1, let us set

Fn = (Iq(fn(t1), . . . , Iq(fn(tk)).

By the assumption (8) and {Iq(fn(t)), n ≥ 1} D→ N (0, t), we obtain, from
Theorem 3.1, that the random vector Fn converges in distribution to a k-
dimensional Gaussian vectorNk(0,Σ), where Σ = (ti∧tj), i, j = 1, . . . , k.
For t1 ≤ t ≤ t2 and n ≥ 1, the formula for the product of the multiple
stochastic integrals and (4) yield

E[
(
Iq(fn(t))− Iq(fn(t1)))

2(Iq(fn(t2))− Iq(fn(t)))2](11)

=

q∑
p=0

(p!)2
(
q

p

)4

(2q − 2p)!× 〈(fn(t)− fn(t1))⊗p (fn(t)− fn(t1)),

fn(t2)− fn(t))⊗p (fn(t2)− fn(t)〉H�(2q−2p) .

By using (9), the Cauchy-Schwartz inequality and ‖f ⊗p f‖H�(2q−2p) =
‖f ⊗q−p f‖H�2p , we get

E[(Iq(fn(t))− Iq(fn(t1)))
2(Iq(fn(t2))− Iq(fn(t)))2]

≤
q∑
p=0

(p!)2
(
q

p

)4

(2q − 2p)!‖(fn(t)− fn(t1))⊗q−p (fn(t)− fn(t1))‖H�2p

×‖fn(t2)− fn(t))⊗q−p (fn(t2)− fn(t)‖H�2p

≤ cq[F (t2)− F (t1)]
ϑ,

which implies that a sequence of cadlag processes {Iq(fn(t)), t ∈ [0, 1]} is
relatively compact in the Skorohod space D([0, 1]). From Theorem 15.6
in [1], the result follows.
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4. Applications

By using our main result, we study the convergence of the sequence
In(t) of the following Stratonovich-type Riemann sums over a uniformly
spaced time partition tj = j/n in the case when H = 1/4.

In(t) =

[nt/2]∑
j=1

BH
(2j − 1

n

)[
BH
(2j

n

)
−BH

(2j − 2

n

)]
.

Let us set

Fn(t) =

[nt/2]∑
j=1

{[
BH
(2j

n

)
−BH

(2j − 1

n

)]2
(12)

−
[
BH
(2j − 1

n

)
−BH

(2j − 2

n

)]2}
.

Theorem 4.1. Let σ be as in (2) and B be a standard Brownian
motion. Then

(13) Fn
D−→ B,

where the notation
D−→ denotes the convergence in distribution on the

Skorohod space D([0, 1]).

Proof. Using the formula for the product of the multiple stochastic
integrals, we write

Fn(t) =

[nt/2]∑
j=1

{
I2(1

⊗2
[ 2j−1

n
, 2j
n
]
)− I2(1⊗2[ 2j−2

n
, 2j−1

n
]
)
}

+

[nt/2]∑
j=1

{
‖1[ 2j−1

n
, 2j
n
]‖

2
H − ‖1[ 2j−2

n
, 2j−1

n
]‖

2
H

}
:= Fn,1(t) + Fn,2(t).

If n = 2k for k = 1, 2, . . ., the sequence {Fn,1(t)} can be written as

Fn,1(t) =

[nt]∑
j=1

(−1)jI2(1
⊗2
[ j−1

n
, j
n
]
).
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If n = 2k + 1 for k = 1, 2, . . ., the sequence {Fn,1(t)} becomes

F ∗n,1(t) =

[(n−1)t]∑
j=1

(−1)jI2(1
⊗2
[ j−1

n
, j
n
]
).

When n = 2k for k = 1, 2, . . ., it is clear that

E[Fn,1(t)
2] = 2

[nt]∑
i,j=1

(−1)i+j〈1⊗2
[ i−1

n
, i
n
]
,1⊗2

[ j−1
n
, j
n
]
〉H⊗2(14)

=
2[nt]

n4H
+

[nt]−1∑
r=1

(
[nt]− 1− r

n4H

)
(−1)rρ(r)2,

where ρ(r) = 2|r|2H − |r + 1|2H − |r − 1|2H . Since
∑∞

r=1 ρ(r)2 < ∞
for H = 1/4, we obtain, by dominated convergence theorem, that the
right-hand side in (14)

lim
n→∞

[nt]−1∑
r=1

(
[nt]− 1− r

n4H

)
(−1)rρ(r)2 = t

∞∑
r=1

(−1)rρ(r)2.

From this, we have

(15) lim
n→∞

E[Fn,1(t)
2] = t

(
2 +

∞∑
r=1

(−1)rρ(r)2
)
.

Let us set σ2 = 2 +
∑∞

r=1(−1)rρ(r)2. By using Theorem 3.1, we will

prove that 1
σ
Fn,1

D−→ B, where B is a standard Brownian motion. Fix
t ∈ [0, 1]. The Malliavin derivative of Fn,1(t) is given by

DFn,1(t) = 2

[nt]∑
j=1

(−1)jI1(1[ j−1
n
, j
n
])1[ j−1

n
, j
n
].
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Hence, by the formula for the product of the multiple stochastic integrals,
we have that for 0 < t ≤ 1,

E[(‖DFn,1(t)‖2H − 2tσ2)2]

= 16

[nt]∑
i,j,k,l=1

(−1)i+j(−1)k+l〈1[ i−1
n
, i
n
],1[ j−1

n
, j
n
]〉H〈1[ k−1

n
, k
n
],1[ l−1

n
, l
n
]〉H

×E[I2(1[ i−1
n
, i
n
] ⊗ 1[ j−1

n
, j
n
])I2(1[ k−1

n
, k
n
] ⊗ 1[ l−1

n
, l
n
])]

+16

[nt]∑
i,j,k,l=1

(−1)i+j(−1)k+l〈1[ i−1
n
, i
n
],1[ j−1

n
, j
n
]〉
2
H〈1[ k−1

n
, k
n
],1[ l−1

n
, l
n
]〉
2
H

−16tσ2

[nt]∑
i,j=1

(−1)i+j〈1[ i−1
n
, i
n
],1[ j−1

n
, j
n
]〉
2
H + 4t2σ2

:= An(t) +Bn(t) + Cn(t) + 4t2σ2.

The equation (4) yields

An(t) = 16

[nt]∑
i,j,k,l=1

(−1)i+j(−1)k+l〈1[ i−1
n
, i
n
],1[ j−1

n
, j
n
]〉H

×〈1[ k−1
n
, k
n
],1[ l−1

n
, l
n
]〉H〈1[ i−1

n
, i
n
],1[ k−1

n
, k
n
]〉H〈1[ j−1

n
, j
n
],1[ l−1

n
, l
n
]〉H

+16

[nt]∑
i,j,k,l=1

(−1)i+j(−1)k+l〈1[ i−1
n
, i
n
],1[ j−1

n
, j
n
]〉H

×〈1[ k−1
n
, k
n
],1[ l−1

n
, l
n
]〉H〈1[ i−1

n
, i
n
],1[ l−1

n
, l
n
]〉H〈1[ j−1

n
, j
n
],1[ k−1

n
, k
n
]〉H

:= An,1(t) + An,2(t).

For the first sum, we decompose the sum
∑[nt]

i,j,k,l=1 as follows:∑
i=j=k=l

+

( ∑
i=j=k
l 6=i

+ · · ·+
∑
j=k=l
i 6=j︸ ︷︷ ︸

four sums

)
+

( ∑
i=j,k=l

k 6=i

+
∑

i=k,j=l
i6=j

+
∑

i=l,j=k
i6=j

)
(16)

+

( ∑
i=j,k 6=i
k 6=l,l 6=i

+ · · ·+
∑

k 6=l,k 6=i
k 6=j,i 6=j︸ ︷︷ ︸

six sums

)
+

∑
i,j,k,l are all different

.
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For the convergence of the above sums, we need to estimate
√
n
∣∣∣〈1[ i−1

n
, i
n
],1[ j−1

n
, j
n
]〉H
∣∣∣(17)

=
1

2

∣∣∣(√|j − i| −√|i− j − 1|
)
−
(√
|j − i+ 1| −

√
|i− j|

)∣∣∣.
Let f(x) =

√
x+ 1−

√
x. Fix j − i ≥ 2, the mean value theorem shows

that for some λ ∈ [0, 1]
√
n
∣∣∣〈1[ i−1

n
, i
n
],1[ j−1

n
, j
n
]〉H
∣∣∣(18)

=
1

2

∣∣∣f ′(j − i− λ)
∣∣∣ ≤ 1

2
√

2(j − i)
√
j − i

.

In the case when j − i = 1, since 2 −
√

2 ≤ 1/
√

2, the inequality (18)
holds. Hence ∣∣∣〈1[ i−1

n
, i
n
],1[ j−1

n
, j
n
]〉H
∣∣∣(19)

≤ 1

2
√

2
√
n|j − i|

√
|j − i|

1{|j−i|≥1} +
1√
n
1{j=i}.

Let us set

Bn(i, j, k, l) = 〈1[ i−1
n
, i
n
],1[ j−1

n
, j
n
]〉H〈1[ k−1

n
, k
n
],1[ l−1

n
, l
n
]〉H

×〈1[ i−1
n
, i
n
],1[ k−1

n
, k
n
]〉H〈1[ j−1

n
, j
n
],1[ l−1

n
, l
n
]〉H.

For the first sum, it follows from (19) that for each 0 < t ≤ 1∣∣∣∣16

[nt]∑
i=j=k=l

(−1)i+j(−1)k+lBn(i, j, k, l)

∣∣∣∣ ≤ c
[nt]

n2
→ 0.

For the second sum, we have, from (19), that∣∣∣∣16
∑
An

ijkl,1

(−1)i+j(−1)k+lBn(i, j, k, l)

∣∣∣∣ ≤ c

n

n∑
l=1

1

l3
→ 0,

where Anijkl,1 = {1 ≤ i, j, k, l ≤ [nt] : i = j = k, l 6= i}. For the third, the
fourth and the fifth sums, we can proceed analogously and we obtain
C/n for bound. For the sixth sum, we have∣∣∣∣16

∑
An

ijkl,2

(−1)i+j(−1)k+lBn(i, j, k, l)

∣∣∣∣ ≤ c

n

n∑
k=1

1

k3
→ 0,
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where Anijkl,2 = {1 ≤ i, j, k, l ≤ [nt] : i = j, k = l, k 6= i} For the seventh
and the eighth sums, we can proceed analogously and we obtain C/n for
bound. For the ninth sum, we have∣∣∣∣16

∑
An

ijkl,3

(−1)i+j(−1)k+lBn(i, j, k, l)

∣∣∣∣(20)

≤ c

n2

∑
k 6=i

k 6=l,l6=i

1

|k − l|3/2
1

|k − i|3/2
1

|l − i|3/2
,

where Anijkl,3 = {1 ≤ i, j, k, l ≤ [nt] : i = j, k 6= i, k 6= l, l 6= i} We can
decompose the sum

∑
k 6=i

k 6=l,l 6=i
into six sums

(21)
∑
k>l>i

+
∑
k>i>l

+ · · ·
∑
i>k>l

.

Since k − i > k − l, we have

c

n2

∑
n≥k>l>i

1

|k − l|3/2
1

|k − i|3/2
1

|l − i|3/2

≤ c

n

n∑
l=1

1

l3

n∑
i=1

1

i3/2
→ 0.

These arguments give the same bound for the other sums in (21). By
using the same way as for the ninth sum, we can show that the other
sums in the fourth part in (16) have the bound C/n. For the last sum
in (16), we can decompose the sum

∑
i,j,k,l are all different into 4! sums

(22)
∑

k>l>i>j

+
∑

k>l>j>i

+ · · · .

For the first sum, we have

c

n2

∑
k>l>i>j

1

|i− j|3/2
1

|k − l|3/2
1

|k − i|3/2
1

|l − i|3/2

≤ c

n

n∑
l=1

1

l3

n∑
i=1

1

i3/2

n∑
i=1

1

j3/2
→ 0.

By using the same as for the first sum in (22), we can show that the same
bound also holds for the other sums in (22). By combining the above
results, we can show that An,1(t)→ 0. By using the same arguments as
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for An,1(t), we have that An,2(t)→ 0, and hence An(t)→ 0. From (15),
we can show that Bn(t) → 4t2σ4 and Cn(t) → 8t2σ4. Hence we have
that t ∈ [0, 1]

(23) DFn,1(t)→ 2tσ2 in L2.

When n = 2k + 1 for k = 1, 2, . . ., it is obvious that (23) also holds. It
is immediately check that the sequence {Fn,2(t)} converges to zero as n
tends to infinity. The result in [4] proves that For every t ∈ [0, 1],

(24)
1

σ
Fn,1(t)

D−→ B(t),

where B is a standard Brownian motion. If we show that

(25) lim
n→∞

E[Fn,1(t)Fn,1(s)] = (t ∧ s)σ2,

we obtain, from Theorem 3.1, that for t1, t2, . . . , tl ∈ [0, 1], l ≥ 1,

(26)
1

σ
(Fn,1(t1), . . . , Fn,1(tl))

D−→ (B(t1), . . . , B(tl)).

Indeed, for s ≤ t, it is clear that

E[Fn,1(t)Fn,1(s)] =
2[ns]

n
+

[ns]−1∑
r=1

(
[ns]− 1− r

n

)
(−1)rρ(r)2(27)

→ sσ2.

For s ≤ t, we estimate, from (19),

‖(Fn,1(t)− Fn,1(s))⊗1 (Fn,1(t)− Fn,1(s))‖2H�2(28)

≤
( ∞∑

r=1

ρ(r)2
)2(

[nt]− [ns]

n

)2

.

By a similar estimate as for (28), we get

‖(Fn,1(t)− Fn,1(s))⊗ (Fn,1(t)− Fn,1(s))‖2H�2(29)

≤
( ∞∑

r=1

ρ(r)2
)2(

[nt]− [ns]

n

)2

.

The estimates (28) and (29) prove that (9) holds. Hence by Theorem
3.2, the result (13) follows in the case when n = 2k. It is clear that the
result (13) follows in the case when n = 2k + 1.
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Lemma 4.2. Let Fn be defined as in (12). Then

(30) (BH , Fn)
D−→ (BH , B),

where B is a standard Brownian motion independent of BH .

Proof. Fix 0 < t1 < · · · < tl. Then the random vector

((BH(ti))1≤i≤l, (I(1[ j−1
n
, j
n
])1≤j≤n)

is a l + n-dimensional normal distribution with mean vector 0 and co-
variance matrix

Σ =

(
Σ11 Σ12

Σ21 Σ22

)
,

where Σ11 = (E[BH(ti)B
H(tj)])1≤i,j≤l, Σ12 = (E[BH(ti)I(1[ j−1

n
, j
n
])]) 1≤i≤l

1≤j≤n

and Σ22 = (ρ(i−j))1≤i,j≤n. Then (I(1[ j−1
n
, j
n
]))1≤j≤n−Σ21Σ

−1
11 (BH(ti))1≤i≤l

and (BH(ti))1≤i≤l are independent. Using the formula for the product
of the multiple stochastic integrals, we write

Fn(t) =

[nt]∑
j=1

(−1)j(I1(1[ j−1
n
, j
n
]))

2 − (−1)j
[nt]

n
.

Define

F ∗n(t) = Fn(t)− 2

[nt]∑
j=1

(−1)jI1(1[ j−1
n
, j
n
])

l∑
k=1

ajkB
H(tk)

+

[nt]∑
j=1

(−1)j
( l∑
k=1

ajkB
H(tk)

)2
,

where Σ21Σ
−1
11 = (ajk)1≤≤n,1≤k≤l. Note that

sup
t∈[0,1]

∞∑
i=1

∣∣∣∣E[BH(t)(BH
( i
n

)
−BH

(i− 1

n

)]∣∣∣∣ <∞,(31)

sup
t∈[0,1]

∣∣∣∣E[BH(t)(BH
( i
n

)
−BH

(i− 1

n

)]∣∣∣∣ ≤ 1√
n
.(32)
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Then, from (31) and (32), we get

E
[

sup
0≤t≤1

|Fn(t)− F ∗n(t)|
]

(33)

≤ c

n1/4
+

c√
n

n∑
j=1

l∑
k=1

∣∣∣E[I1(1[ j−1
n
, j
n
])B

H(tk)
]∣∣∣→ 0 as n→∞.

Thus it follows from (13) and (33) that

((BH(ti))1≤i≤l, F
∗
n(s1), . . . , F

∗
n(sk))

D−→ ((BH(ti))1≤i≤l, B(s1), . . . , B(sk)).

Since (BH(ti))1≤i≤l and F ∗n are independent, and the sequence (BH , Fn)
is relatively compact, the proof is complete.

Theorem 4.3. Let σ be as in (2) and and B be a standard Brownian
motion. Then

(34) In
L−→ 1

2
(BH)2 − σ

2
B,

where B is a standard Brownian motion independent of BH .

Proof. Using a2 − b2 = (a + b)(a− b), the sequence {Fn} in (12) can
be written as

Fn(t) = −2In(t) +BH
(2[nt/2]

n

)2
−BH(t)2 +BH(t)2.(35)

From (35), we write

In(t) =
1

2
BH(t)2 +

[
BH
(2[nt/2]

n

)2
−BH(t)2

]
− Fn(t).

It is clear that

E
[

sup
0≤t≤1

∣∣∣BH
(2[nt/2]

n

)2
−BH(t)2

∣∣∣]→ 0.

By Lemma 4.2, the proof is complete.
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