Korean J. Math. **22** (2014), No. 1, pp. 85–89 http://dx.doi.org/10.11568/kjm.2014.22.1.85

ON *k*-QUASI-CLASS *A* CONTRACTIONS

In Ho Jeon and In Hyoun Kim[†]

ABSTRACT. A bounded linear Hilbert space operator T is said to be k-quasi-class A operator if it satisfy the operator inequality $T^{*k}|T^2|T^k \ge T^{*k}|T|^2T^k$ for a non-negative integer k. It is proved that if T is a k-quasi-class A contraction, then either T has a nontrivial invariant subspace or T is a proper contraction and the nonnegative operator $D = T^{*k}(|T^2| - |T|^2)T^k$ is strongly stable.

1. Introduction

Let $B(\mathcal{H})$ denote the algebra of bounded linear operators on an infinite dimensional complex Hilbert space \mathcal{H} . For any operator T in $B(\mathcal{H})$ set, as usual, $|T| = (T^*T)^{\frac{1}{2}}$ and $[T^*, T] = T^*T - TT^* = |T|^2 - |T^*|^2$ (the self-commutator of T), and consider the following standard definitions: T is hyponormal if $|T^*|^2 \ge |T|^2$ (i.e., if self-commutator $[T^*, T]$ is non-negative or, equivalently, if $||T^*x|| \le ||Tx||$ for every x in \mathcal{H}), p-hyponormal if $(T^*T)^p \ge (TT^*)^p$ for some $p \in (0, 1]$, and T is called paranormal if $||T^2x|| \ge ||Tx||^2$ for all unit vector $x \in \mathcal{H}$. Following [13] and [4] we say that $T \in B(\mathcal{H})$ belongs to class A if $|T^2| \ge |T|^2$. We shall denote classes of hyponormal operators, p-hyponormal operators, paranormal operators, and class A operators by $\mathcal{H}, \mathcal{H}(p), \mathcal{PN}$, and \mathcal{A} ,

Received March 3, 2014. Revised March 13, 2014. Accepted March 13, 2014.

²⁰¹⁰ Mathematics Subject Classification: 47B20, 47A10.

Key words and phrases: k-quasi-class \mathcal{A} operator, k-quasi-class \mathcal{A} contraction, proper contraction, strongly stable.

[†] Corresponding author.

[†] This work was supported by the Incheon National University Grant in 2012.

[©] The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

respectively. It is well known that

(1)
$$\mathcal{H} \subset \mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{PN}.$$

In [8] authors considered an extension of the notion of class \mathcal{A} operators; we say that $T \in B(\mathcal{H})$ is k-quasi-class \mathcal{A} operator if

$$T^{*k}|T^2|T^k \ge T^{*k}|T|^2T^k$$

for non-negative integer k; when k = 1, it is called the quasi-class A operator. We shall denote the set of k-quasi-class \mathcal{A} operators by $\mathcal{QA}(k)$. Class $\mathcal{QA}(k)$ properly contains class \mathcal{A} and quasi-class A.

It is well known that

(2)
$$\mathcal{H} \subset \mathcal{H}(p) \subset \mathcal{A} \subset \mathcal{QA} \subset \mathcal{QA}(k).$$

In view of inclusions (1) and (2), it seems reasonable to expect that the operators in class \mathcal{QA} are paranormal. But there exists an example of a class \mathcal{QA} operator which is not paranormal ([8]).

Recall, [10], that a contraction A (i.e., if $||A|| \leq 1$, which means that $||Ax|| \leq ||x||$ for every $x \in \mathcal{H}$) is said to be a proper contraction if ||Ax|| < ||x|| for every nonzero $x \in \mathcal{H}$. A strict contraction (i.e., a contraction A such that ||A|| < 1) is a proper contraction, but a proper contraction is not necessarily a strict contraction. C. S. Kubrusly and N. Levan [10] have proved that if a hyponormal contraction A has no nontrivial invariant subspace, then

(a) A is a proper contraction and

(b) its self-commutator $[A^*, A]$ is a strict contraction.

Recently B. p. Duggal, I. H. Jeon and C. S. Kubrusly [2] showed that if A is a class A contraction, then either A has a nontrivial invariant subspace or A is a proper contraction and the non-negative operator $D = |A^2| - |A|^2$ is strongly stable (i.e., the power sequence $\{D^n\}$ converges strongly to 0). Very recently B. P. Duggal and authors [3] extend these results to contractions in \mathcal{QA} . In this paper, we extend these results to contractions in $\mathcal{QA}(k)$, which generalizes results proved for contractions in \mathcal{QA} [2].

2. Results

We begin with well known following lemma;

86

LEMMA 2.1. (see, [13]) An operator $T \in \mathcal{QA}(k)$ has a following matrix representation if ran (T^k) is not dense

(3)
$$T = \begin{pmatrix} A & B \\ 0 & C \end{pmatrix}$$
 on $\overline{\operatorname{ran}(\mathbf{T}^k)} \oplus \ker(\mathbf{T}^{*k})$

where $A \in \mathcal{A}$, C is a nilpotent with order k and $\sigma(T) = \sigma(A) \cup \{0\}$.

LEMMA 2.2. If $T \in \mathcal{QA}(k)$ is a contraction, then the non-negative operator $D = T^{*k}(|T^2| - |T|^2)T^k$ is a contraction such that the power sequence $\{D^n\}$ converges strongly to a projection P satisfying $T^{k+1}P = 0$.

Proof. Set
$$R = D^{\frac{1}{2}}$$
. Then, for every $x \in \mathcal{H}$, we have
 $\langle D^{n+1}x, x \rangle = \langle R^{n+1}x, R^{n+1} \rangle$
 $= \langle DR^n x, R^n x \rangle$
 $= \langle T^{*k}(|T^2| - |T|^2)T^k R^n x, R^n x \rangle$
 $= \langle |T^2|T^k R^n x, T^k R^n x \rangle - \langle |T|^2 T^k R^n x, T^k R^n x \rangle$
 $\leq |||T^2|^{\frac{1}{2}}T^k R^n x||^2$
 $\leq ||R^n x||^2$ (*T* is contraction)
 $= \langle D^n x, x \rangle$,

which implies that D is a contraction. Evidently, the sequence $\{D^n\}$ being a monotonic decreasing sequence of non-negative contractions. Therefore $\{D^n\}$ converges strongly to a projection P. Now we should be show that $T^{k+1}P = 0$. Since

$$\begin{aligned} \|R^{n}x\|^{2} - \|R^{n+1}x\|^{2} &= \|R^{n}x\|^{2} - \langle |T^{2}|T^{k}R^{n}x, T^{k}R^{n}x\rangle + \|T^{k+1}R^{n}x\|^{2} \\ &= \langle (1 - T^{*k}|T^{2}|T^{k})R^{n}x, R^{n}x\rangle + \|T^{k+1}R^{n}x\|^{2} \\ &\geq \|T^{k+1}R^{n}x\|^{2} \qquad (T \text{ is contraction}), \end{aligned}$$

we have that

$$\sum_{n=0}^{m} ||T^{k+1}R^n x||^2 \le \sum_{n=0}^{m} ||R^n x||^2 - \sum_{n=0}^{m} ||R^{n+1} x||^2 = ||x||^2 - ||R^{m+1} x||^2 \le ||x||^2$$

for every $x \in \mathcal{H}$ and non-negative integer m. Hence $||T^{k+1}R^n x|| \longrightarrow 0$ as $n \longrightarrow \infty$. Consequently, we have

$$T^{k+1}Px = T^{k|1} \lim_{n \to \infty} D^n x = \lim_{n \to \infty} T^{k+1}R^{2n}x = 0,$$

for every $x \in \mathcal{H}$. Hence $T^2 P = 0$.

 \square

Recall that $T \in B(\mathcal{H})$ is a C_0 -contraction (resp., C_1 -contraction) if $||T^n x||$ converges to 0 for all $x \in \mathcal{H}$ (resp., does not converge to 0 for all non-trivial $x \in \mathcal{H}$); T is of class C_0 , or C_1 , if T^* is of class C_0 , respectively C_1 . All combinations are allowed, leading to the classes C_{00}, C_{01}, C_{10} and C_{11} of contractions [11, Page 72]. Duggal, Jeon and Kubrusly [2] showed that the following lemma;

LEMMA 2.3. If a class A contraction T has no nontrivial invariant subspace, then (a) T is a proper contraction and (b) the non-negative operator $D = |T^2| - |T|^2$ is a strongly stable contraction (so that $D \in C_{00}$).

Using the above lemmas we can show that the following theorem;

THEOREM 2.4. If $T \in \mathcal{QA}(k)$ is a contraction with no non-trivial invariant subspace for non-negative integer k, then: (a) T is a proper contraction; (b) the non-negative operator $D = T^{*k}(|T^2| - |T|^2)T^k$ is a strongly stable contraction (and hence of class C_{00}).

Proof. We may assume that T is non-zero.

(a) If either of $T^{-1}(0)$ or $\overline{\operatorname{ran}(T^k)}$ is non-trivial (i.e., $T^{-1}(0) \neq \{0\}$ or $\overline{\operatorname{ran}(T^k)} \neq \mathcal{H}$), then T has a non-trivial invariant subspace. Hence, if $T \in \mathcal{QA}(k)$ has no non-trivial invariant subspace, then T is injective and $\overline{\operatorname{ran}(T^k)} = \mathcal{H}$) Consequently, T must be class A operator. The proof now follows from Lemma 2.3.

(b) If $T \in \mathcal{QA}(k)$ is a contraction, then by Lemma 2.2 D is a contraction, $\{D^n\}$ converges strongly to a projection P and $T^{k+1}P = 0$. Therefore we have $PT^{*k+1} = 0$. Suppose T has no non-trivial invariant subspace. Since $P^{-1}(0)$ is a non-zero invariant subspace for T whenever $PT^{*k+1} = 0$, we must have $P^{-1}(0) = \mathcal{H}$. hence P must be zero and so $\{D^n\}$ converges strongly to 0, that is, D is a strongly stable contraction. Since D is a self-adjoint, $D \in C_{00}$.

It is well known that a self-adjoint operator is a proper contraction if and only if it is a C_{00} -contraction. Hence, we have the following from Theorem 2.4.

COROLLARY 2.5. If $T \in \mathcal{QA}(k)$ is a contraction with no non-trivial invariant subspace for non-negative integer k, then both T and T^{*} are proper contractions.

88

References

- B. P. Duggal, On charcterising contractions with Hilbert-Schmidt defect operator and C_{.0} completely non-unitary part, Integr. Equat. Op. Th. 27 (1997), 314–323.
- [2] B. P. Duggal, I. H. Jeon and C. S. Kubrusly, Contractions satisfying the absolute value property |A|² ≤ |A²|, Integr. Equat. Op. Th. 49 (2004), 141–148.
- [3] B. P. Duggal, I. H. Jeon and I. H. Kim, On quasi-class A contractions, Linear Algebra Appl. 436 (2012), 3562–3567.
- [4] T. Furuta, Invitation to Linear Operators, Taylor and Francis, London (2001).
- [5] F. Gilfeather, Operator valued roots of abelian analytic functions, Pacific J. Math. 55 (1974), 127–148.
- [6] T. Furuta, M. Ito and T. Yamazaki, A subclass of paranormal operators including class of log-hyponormal and several related classes, Scientiae Mathematicae 1 (1998), 389-403.
- [7] P. R. Halmos, A Hilbert Space Problem Book, 2nd edn., Graduate Texts in Mathematics Vol. 19, Springer, New York (1982).
- [8] I. H. Jeon and I. H. Kim, On operators satisfying $T^*|T^2|T \ge T^*|T|^2T$, Linear Algebra Appl. **418** (2006), 854–862.
- R.V. Kadison and I.M. Singer, Three test problems in operator theory, Pacific J. Math. 7 (1957), 1101–1106.
- [10] C.S. Kubrusly and N. Levan, Proper contractions and invariant subspaces, Internat. J. Math. Math. Sci. 28 (2001), 223–230.
- [11] B. Sz.–Nagy and C. Foiaş, Harmonis Analysis of Operators on Hilbert Space, North–Holland, Amsterdam (1970).
- [12] H. Radjavi and P. Rosenthal, On roots of normal operators, J. Math. Anal. Appl. 34 (1971), 653-664.
- [13] K.Takahashi, I.H. Jeon, I.H. Kim and M. Uchiyama, Quasinilpotent part of class A or (p, k)-quasihyponormal operators, J. Operator Theory: Advances and Applications 187 (2008), 199–210.
- [14] K.Takahashi and M. Uchiyama, Every C_{00} contraction with Hilbert-Schmidt defect operator is of class C_0 , J. Operator Theory. **10** (1983), 331–335.

In Ho Jeon Department of Mathematics Education Seoul National University of Education Seoul 137-742, Korea *E-mail*: jihmath@snue.ac.kr

In Hyoun Kim Department of Mathematics Incheon National University Incheon 406-772, Korea *E-mail*: ihkim@inchon.ac.kr