
Korean J. Math. 22 (2014), No. 1, pp. 91–121
http://dx.doi.org/10.11568/kjm.2014.22.1.91

STABILITY OF HOMOMORPHISMS IN BANACH

MODULES OVER A C⇤-ALGEBRA ASSOCIATED WITH

A GENERALIZED JENSEN TYPE MAPPING AND

APPLICATIONS

Jung Rye Lee

Abstract. Let X and Y be vector spaces. It is shown that a
mapping f : X ! Y satisfies the functional equation

2df(
x1 +

P2d
j=2(�1)jxj

2d
)� 2df(

x1 +
P2d

j=2(�1)j+1
xj

2d
)

= 2
2dX

j=2

(�1)jf(xj)(‡)

if and only if the mapping f : X ! Y is additive, and prove the
Cauchy-Rassias stability of the functional equation (‡) in Banach
modules over a unital C⇤-algebra, and in Poisson Banach modules
over a unital Poisson C

⇤-algebra. LetA and B be unital C⇤-algebras,
Poisson C

⇤-algebras, Poisson JC

⇤-algebras or Lie JC

⇤-algebras. As
an application, we show that every almost homomorphism h : A ! B
of A into B is a homomorphism when h(dnuy) = h(dnu)h(y) or
h(dnu � y) = h(dnu) � h(y) for all unitaries u 2 A, all y 2 A, and
n = 0, 1, 2, · · · .

Moreover, we prove the Cauchy-Rassias stability of homomor-
phisms in C

⇤-algebras, Poisson C

⇤-algebras, Poisson JC

⇤-algebras
or Lie JC⇤-algebras, and of Lie JC⇤-algebra derivations in Lie JC⇤-
algebras.
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1. Introduction

In 1940, Ulam [23] raised the following question: Under what condi-
tions does there exist an additive mapping near an approximately addi-
tive mapping?

Let X and Y be Banach spaces with norms || · || and k ·k, respectively.
Hyers [4] showed that if ✏ > 0 and f : X ! Y such that

kf(x+ y)� f(x)� f(y)k  ✏

for all x, y 2 X, then there exists a unique additive mapping T : X ! Y
such that

kf(x)� T (x)k  ✏

for all x 2 X.
Consider f : X ! Y to be a mapping such that f(tx) is continuous

in t 2 R for each fixed x 2 X. Assume that there exist constants ✏ � 0
and p 2 [0, 1) such that

(*) kf(x+ y)� f(x)� f(y)k  ✏(||x||p + ||y||p)
for all x, y 2 X. Th.M. Rassias [15] showed that there exists a unique
R-linear mapping T : X ! Y such that

kf(x)� T (x)k  2✏

2� 2p
||x||p

for all x 2 X. The inequality (*) that was introduced for the first
time by Th.M. Rassias [15] we call Cauchy-Rassias inequality and the
stability of the functional equation Cauchy-Rassias stability. This in-
equality has provided a lot of influence in the development of what we
now call Hyers-Ulam-Rassias stability of functional equations. Begin-
ning around the year 1980 the topic of approximate homomorphisms, or
the stability of the equation of homomorphism, was taken up by a num-
ber of mathematicians (cf. [5], [12], [14], [17], [18], [19], [20], [21], [22]).
Th.M. Rassias [16] during the 27th International Symposium on Func-
tional Equations asked the question whether such a theorem can also be
proved for p � 1. Z. Gajda [1] following the same approach as in Th.M.
Rassias [15], gave an a�rmative solution to this question for p > 1.

Găvruta [2] generalized the Rassias’ result: Let G be an abelian group
and Y a Banach space. Denote by ' : G⇥ G ! [0,1) a function such
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that

e'(x, y) =
1X

j=0

2�j'(2jx, 2jy) < 1

for all x, y 2 G. Suppose that f : G ! Y is a mapping satisfying

kf(x+ y)� f(x)� f(y)k  '(x, y)

for all x, y 2 G. Then there exists a unique additive mapping T : G ! Y
such that

kf(x)� T (x)k  1

2
e'(x, x)

for all x 2 G. C. Park [11] applied the Găvruta’s result to linear func-
tional equations in Banach modules over a C⇤-algebra.

Jun and Lee [6] proved the following: Denote by ' : X \ {0} ⇥ X \
{0} ! [0,1) a function such that

e'(x, y) =
1X

j=0

3�j'(3jx, 3jy) < 1

for all x, y 2 X \ {0}. Suppose that f : X ! Y is a mapping satisfying

k2f(x+ y

2
)� f(x)� f(y)k  '(x, y)

for all x, y 2 X \ {0}. Then there exists a unique additive mapping
T : X ! Y such that

kf(x)� f(0)� T (x)|  1

3
(e'(x,�x) + e'(�x, 3x))

for all x 2 X \ {0}. C. Park and W. Park [13] applied the Jun and Lee’s
result to the Jensen’s equation in Banach modules over a C⇤-algebra.

Throughout this paper, assume that d is an integer greater than 1.
In this paper, we solve the following functional equation

2df(
x1 +

P2d
j=2(�1)jx

j

2d
)� 2df(

x1 +
P2d

j=2(�1)j+1x
j

2d
) = 2

2dX

j=2

(�1)jf(x
j

).

(1.i)

We moreover prove the Cauchy-Rassias stability of the functional equa-
tion (1.i) in Banach modules over a unital C⇤-algebra. The main purpose
of this paper is to investigate homomorphisms between C⇤-algebras, be-
tween Poisson C⇤-algebras, between Poisson JC⇤-algebras and between
Lie JC⇤-algebras, and to prove their Cauchy-Rassias stability.
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2. A generalized Jensen type mapping

Throughout this section, assume that X and Y are linear spaces.

Lemma 2.1. Amapping f : X ! Y satisfies (1.i) for all x1, x2, · · · , x2d

2 X and f(0) = 0 if and only if f is additive.

Proof. Assume that f : X ! Y satisfies (1.i) for all x1, x2, · · · , x2d 2
X. Putting x3 = · · · = x2d = 0 in (1.i), we get

(2.1) 2df(
x1 + x2

2d
)� 2df(

x1 � x2

2d
) = 2f(x2)

for all x1, x2 2 X. Putting x2 = x1 in (2.1), we get

2df(
x1

d
) = 2f(x1)

for all x1 2 X. So we get

(2.2) 2f(
x1 + x2

2
)� 2f(

x1 � x2

2
) = 2f(x2)

for all x1, x2 2 X. Putting x1�x2
2 = x and x2 = y in (2.2), we get

2f(x+ y) = 2f(
x1 + x2

2
) = 2f(

x1 � x2

2
) + 2f(x2) = 2f(x) + 2f(y)

for all x, y 2 X. Thus f is additive.
The converse is obviously true.

3. Cauchy-Rassias stability of the generalized Jensen type
mapping in Banach modules over a C⇤-algebra

Throughout this section, assume that A is a unital C⇤-algebra with
norm | · | and unitary group U(A), and that X and Y are left Banach
modules over A with norms || · || and k · k, respectively.

Given a mapping f : X ! Y , we set

D
u

f(x1, · · · , x2d) :=2df(
ux1 +

P2d
j=2(�1)jux

j

2d
)

� 2df(
ux1 +

P2d
j=2(�1)j+1ux

j

2d
)� 2

2dX

j=2

(�1)juf(x
j

)

for all u 2 U(A) and all x1, · · · , x2d 2 X.
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Theorem 3.1. Let f : X ! Y be a mapping satisfying f(0) = 0 for

which there is a function ' : X2d ! [0,1) such that

e'(x1, · · · , x2d) : =
1X

j=1

1

dj
'(djx1, · · · , djx2d) < 1,(3.i)

kD
u

f(x1, · · · , x2d)k  '(x1, · · · , x2d)(3.ii)

for all u 2 U(A) and all x1, · · · , x2d 2 X. Then there exists a unique

A-linear generalized Jensen type mapping L : X ! Y such that

(3.iii) kf(x)� L(x)k  1

2
e'(x, · · · , x| {z }

2d times

)

for all x 2 X.

Proof. Let u = 1 2 U(A). Putting x1 = · · · = x2d = x in (3.ii), we
have

(3.0) k2df(x
d
)� 2f(x)k  '(x, · · · , x| {z }

2d times

)

for all x 2 X. So

kf(x)� 1

d
f(dx)k  1

2d
'(dx, · · · , dx| {z }

2d times

)

for all x 2 X. Hence

k 1

dn
f(dnx)� 1

dn+1
f(dn+1x)k  1

2dn+1
'(dn+1x, · · · , dn+1x| {z }

2d times

)(3.1)

for all x 2 X and all positive integers n. By (3.1), we have

(3.2) k 1

dm
f(dmx)� 1

dn
f(dnx)k 

n�1X

k=m

1

2dk+1
'(dk+1x, · · · , dk+1x| {z }

2d times

)

for all x 2 X and all positive integers m and n with m < n. This shows
that the sequence { 1

d

nf(d
nx)} is a Cauchy sequence for all x 2 X. Since

Y is complete, the sequence { 1
d

nf(d
nx)} converges for all x 2 X. So we

can define a mapping L : X ! Y by

L(x) := lim
n!1

1

dn
f(dnx)
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for all x 2 X. We get

kD1L(x1, · · · , x2d)k = lim
n!1

1

dn
kD1f(d

nx1, · · · , dnx2d)k

 lim
n!1

1

dn
'(dnx1, · · · , dnx2d) = 0

for all x1, · · · , x2d 2 X. By Lemma 2.1, L is additive. Putting m = 0
and letting n ! 1 in (3.2), we get (3.iii).

Now, let L0 : X ! Y be another generalized Jensen type mapping
satisfying (3.iii). Then we have

kL(x)� L0(x)k =
1

dn
kL(dnx)� L0(dnx)k

 1

dn
(kL(dnx)� f(dnx)k+ kL0(dnx)� f(dnx)k)

 2

2dn+1
e'(dnx, · · · , dnx| {z }

2d times

),

which tends to zero as n ! 1 for all x 2 X. So we can conclude that
L(x) = L0(x) for all x 2 X. This proves the uniqueness of L.

By the assumption, for each u 2 U(A), we get

kD
u

L(x, x, 0, · · · , 0| {z }
2d� 2 times

)k = lim
n!1

1

dn
kD

u

f(dnx, dnx, 0, · · · , 0| {z }
2d� 2 times

)k

 lim
n!1

1

dn
'(dnx, dnx, 0, · · · , 0| {z }

2d� 2 times

) = 0

for all x 2 X. So

2dL(
ux

d
) = 2uL(x)

for all u 2 U(A) and all x 2 X. Since L is additive,

(3.3) L(ux) = uL(x)

for all u 2 U(A) and all x 2 X.

Now let a 2 A (a 6= 0) and M an integer greater than 4|a|. Then
| a

M

| < 1
4 < 1 � 2

3 = 1
3 . By [?, 7], there exist three elements u1, u2, u3 2
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U(A) such that 3 a

M

= u1 + u2 + u3. So by (3.3)

L(ax) = L(
M

3
· 3 a

M
x) = M · L(1

3
· 3 a

M
x) =

M

3
L(3

a

M
x)

=
M

3
L(u1x+ u2x+ u3x) =

M

3
(L(u1x) + L(u2x) + L(u3x))

=
M

3
(u1 + u2 + u3)L(x) =

M

3
· 3 a

M
L(x)

= aL(x)

for all a 2 A and all x 2 X. Hence

L(ax+ by) = L(ax) + L(by) = aL(x) + bL(y)

for all a, b 2 A(a, b 6= 0) and all x, y 2 X. And L(0x) = 0 = 0L(x) for
all x 2 X. So the generalized Jensen type mapping L : X ! Y is an
A-linear mapping, as desired.

Corollary 3.2. Let ✓ and p < 1 be positive real numbers. Let

f : X ! Y be a mapping satisfying f(0) = 0 such that

kD
u

f(x1, · · · , x2d)k  ✓
2dX

j=1

||x
j

||p

for all u 2 U(A) and all x1, · · · , x2d 2 X. Then there exists a unique

A-linear generalized Jensen type mapping L : X ! Y such that

kf(x)� L(x)k  dp+1

d� dp
✓||x||p

for all x 2 X.

Proof. Define '(x1, · · · , x2d) = ✓
P2d

j=1 ||xj

||p, and apply Theorem 3.1.

Theorem 3.3. Let f : X ! Y be a mapping satisfying f(0) = 0 for

which there is a function ' : X2d ! [0,1) such that

e'(x1, · · · , x2d) : =
1X

j=0

dj'(
x1

dj
, · · · , x2d

dj
) < 1,(3.iv)

kD
u

f(x1, · · · , x2d)k  '(x1, · · · , x2d)(3.v)
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for all u 2 U(A) and all x1, · · · , x2d 2 X. Then there exists a unique

A-linear generalized Jensen type mapping L : X ! Y such that

(3.vi) kf(x)� L(x)k  1

2
e'(x, · · · , x| {z }

2d times

)

for all x 2 X.

Proof. It follows from (3.0) that

kdnf( x
dn

)� dn+1f(
x

dn+1
)k  dn

2
'(

x

dn
, · · · , x

dn| {z }
2d times

)(3.4)

for all x 2 X and all positive integers n. By (3.4), we have

(3.5) kdmf( x

dm
)� dnf(

x

dn
)k 

n�1X

k=m

dk

2
'(

x

dk
, · · · , x

dk| {z }
2d times

)

for all x 2 X and all positive integers m and n with m < n. This shows
that the sequence {dnf( x

d

n )} is a Cauchy sequence for all x 2 X. Since
Y is complete, the sequence {dnf( x

d

n )} converges for all x 2 X. So we
can define a mapping L : X ! Y by

L(x) := lim
n!1

dnf(
x

dn
)

for all x 2 X. Also, we get

kD1L(x1, · · · , x2d)k = lim
n!1

dnkD1f(
x1

dn
, · · · , x2d

dn
)k

 lim
n!1

dn'(
x1

dn
, · · · , x2d

dn
) = 0

for all x1, · · · , x2d 2 X. By Lemma 2.1, L is additive. Putting m = 0
and letting n ! 1 in (3.5), we get (3.vi).

The rest of the proof is similar to the proof of Theorem 3.1.

Corollary 3.4. Let ✓ and p > 1 be positive real numbers. Let

f : X ! Y be a mapping satisfying f(0) = 0 such that

kD
u

f(x1, · · · , x2d)k  ✓
2dX

j=1

||x
j

||p
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for all u 2 U(A) and all x1, · · · , x2d 2 X. Then there exists a unique

A-linear generalized Jensen type mapping L : X ! Y such that

kf(x)� L(x)k  dp+1

dp � d
✓||x||p

for all x 2 X.

Proof. Define '(x1, · · · , x2d) = ✓
P2d

j=1 ||xj

||p, and apply Theorem 3.3.

4. Isomorphisms between unital C⇤-algebras

Throughout this section, assume that A is a unital C⇤-algebra with
norm || · ||, unit e and unitary group U(A), and that B is a unital C⇤-
algebra with norm k · k.

We are going to investigate C⇤-algebra isomorphisms between unital
C⇤-algebras.

Theorem 4.1. Let h : A ! B be a bijective mapping satisfying

h(0) = 0 and h(dnuy) = h(dnu)h(y) for all u 2 U(A), all y 2 A, and

n = 0, 1, 2, · · · , for which there is a function ' : A2d ! [0,1) satisfying
(3.i) such that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

2d
)� 2dh(

µx1 +
P2d

j=2(�1)j+1µx
j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)k  '(x1, · · · , x2d),(4.i)

kh(dnu⇤)� h(dnu)⇤k  '(dnu, · · · , dnu| {z }
2d times

)(4.ii)

for all u 2 U(A), all x1, · · · , x2d 2 A, all µ 2 T1 := {� 2 C | |�| = 1}
and n = 0, 1, 2, · · · . Assume that (4.iii) lim

n!1
h(dne)
d

n is invertible. Then

the bijective mapping h : A ! B is a C⇤
-algebra isomorphism.

Proof. We consider a C⇤-algebra as a Banach module over a unital C⇤-
algebra C. By Theorem 3.1, there exists a unique C-linear generalized
Jensen type mapping H : A ! B such that

(4.iv) kh(x)�H(x)k  1

2
e'(x, · · · , x| {z }

2d times

)
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for all x 2 A. The mapping H : A ! B is given by

(4.1) H(x) = lim
n!1

1

dn
h(dnx)

for all x 2 A.
By (3.i) and (4.ii), we get

H(u⇤) = lim
n!1

h(dnu⇤)

dn
= lim

n!1

h(dnu)⇤

dn
= ( lim

n!1

h(dnu)

dn
)⇤

= H(u)⇤

for all u 2 U(A). Since H is C-linear and each x 2 A is a finite linear
combination of unitary elements (see [?, 8]), i.e., x =

P
m

j=1 �j

u
j

(�
j

2
C, u

j

2 U(A)),

H(x⇤) = H(
mX

j=1

�
j

u⇤
j

) =
mX

j=1

�
j

H(u⇤
j

) =
mX

j=1

�
j

H(u
j

)⇤ = (
mX

j=1

�
j

H(u
j

))⇤

= H(
mX

j=1

�
j

u
j

)⇤ = H(x)⇤

for all x 2 A.
Since h(dnuy) = h(dnu)h(y) for all u 2 U(A), all y 2 A, and all

n = 0, 1, 2, · · · ,

(4.2) H(uy) = lim
n!1

1

dn
h(dnuy) = lim

n!1

1

dn
h(dnu)h(y) = H(u)h(y)

for all u 2 U(A) and all y 2 A. By the additivity of H and (4.2),

dnH(uy) = H(dnuy) = H(u(dny)) = H(u)h(dny)

for all u 2 U(A) and all y 2 A. Hence

(4.3) H(uy) =
1

dn
H(u)h(dny) = H(u)

1

dn
h(dny)

for all u 2 U(A) and all y 2 A. Taking the limit in (4.3) as n ! 1, we
obtain

(4.4) H(uy) = H(u)H(y)

for all u 2 U(A) and all y 2 A. Since H is C-linear and each x 2 A is a
finite linear combination of unitary elements, i.e., x =

P
m

j=1 �j

u
j

(�
j

2
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C, u
j

2 U(A)), it follows from (4.4) that

H(xy) = H(
mX

j=1

�
j

u
j

y) =
mX

j=1

�
j

H(u
j

y) =
mX

j=1

�
j

H(u
j

)H(y)(1)

= H(
mX

j=1

�
j

u
j

)H(y) = H(x)H(y)

for all x, y 2 A.
By (4.2) and (4.4),

H(e)H(y) = H(ey) = H(e)h(y)

for all y 2 A. Since lim
n!1

h(dne)
d

n = H(e) is invertible,

H(y) = h(y)

for all y 2 A.
Therefore, the bijective mapping h : A ! B is a C⇤-algebra isomor-

phism.

Corollary 4.2. Let h : A ! B be a bijective mapping satisfying

h(0) = 0 and h(dnuy) = h(dnu)h(y) for all u 2 U(A), all y 2 A, and all

n = 0, 1, 2, · · · , for which there exist constants ✓ � 0 and p 2 [0, 1) such
that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

2d
)� 2dh(

µx1 +
P2d

j=2(�1)j+1µx
j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)k  ✓

2dX

j=1

||x
j

||p,

kh(dnu⇤)� h(dnu)⇤k  2d · dnp✓
for all µ 2 T1

, all u 2 U(A), n = 0, 1, 2, · · · , and all x1, · · · , x2d 2 A.

Assume that lim
n!1

h(dne)
d

n is invertible. Then the bijective mapping

h : A ! B is a C⇤
-algebra isomorphism.

Proof. Define '(x1, · · · , x2d) = ✓
P2d

j=1 ||xj

||p, and apply Theorem 4.1.

Theorem 4.3. Let h : A ! B be a bijective mapping satisfying

h(0) = 0 and h(dnuy) = h(dnu)h(y) for all u 2 U(A), all y 2 A, and
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n = 0, 1, 2, · · · , for which there is a function ' : A2d ! [0,1) satisfying
(3.i), (4.ii), and (4.iii) such that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

2d
)�2dh(

µx1 +
P2d

j=2(�1)j+1µx
j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)k  '(x1, · · · , x2d)(4.v)

for all x1, · · · , x2d 2 A and µ = 1, i. If h(tx) is continuous in t 2 R for

each fixed x 2 A, then the bijective mapping h : A ! B is a C⇤
-algebra

isomorphism.

Proof. Put µ = 1 in (4.v). By the same reasoning as in the proof
of Theorem 4.1, there exists a unique generalized Jensen type mapping
H : A ! B satisfying (4.iv). By the same reasoning as in the proof
of [?, 15], the mapping H : A ! B is R-linear.

Put µ = i in (4.v). By the same method as in the proof of Theorem
4.1, one can obtain that

H(ix) = lim
n!1

h(dnix)

dn
= lim

n!1

ih(dnx)

dn
= iH(x)

for all x 2 A.
For each element � 2 C, � = s+ it, where s, t 2 R. So

H(�x) = H(sx+ itx) = sH(x) + tH(ix) = sH(x) + itH(x)

= (s+ it)H(x) = �H(x)

for all � 2 C and all x 2 A. So

H(⇣x+ ⌘y) = H(⇣x) +H(⌘y) = ⇣H(x) + ⌘H(y)

for all ⇣, ⌘ 2 C, and all x, y 2 A. Hence the additive mappingH : A ! B
is C-linear.

The rest of the proof is the same as in the proof of Theorem 4.1.

Now we prove the Cauchy-Rassias stability of C⇤-algebra homomor-
phisms in unital C⇤-algebras.

Theorem 4.4. Let h : A ! B be a mapping satisfying h(0) = 0 for

which there exists a function ' : A2d ! [0,1) satisfying (3.i), (4.i) and
(4.ii) such that

(4.vi) kh(dnu · dnv)� h(dnu)h(dnv)k  '(dnu, dnv, 0, · · · , 0| {z }
2d� 2 times

)
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for all u, v 2 U(A) and n = 0, 1, 2, · · · . Then there exists a unique

C⇤
-algebra homomorphism H : A ! B satisfying (4.iv)

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear involutive generalized Jensen type mapping H :
A ! B satisfying (4.iv).

By (4.vi),

1

d2n
kh(dnu · dnv)� h(dnu)h(dnv)k  1

d2n
'(dnu, dnv, 0, · · · , 0| {z }

2d� 2 times

)

 1

dn
'(2nu, 2nv, 0, · · · , 0| {z }

2d� 2 times

),

which tends to zero by (3.i) as n ! 1. By (4.1),

H(uv) = lim
n!1

h(dnu · dnv)
d2n

= lim
n!1

h(dnu)h(dnv)

d2n

= lim
n!1

h(dnu)

dn
h(dnv)

dn
= H(u)H(v)

for all u, v 2 U(A). Since H is C-linear and each x 2 A is a finite linear
combination of unitary elements, i.e., x =

P
m

j=1 �j

u
j

(�
j

2 C, u
j

2
U(A)),

H(xv) = H(
mX

j=1

�
j

u
j

v) =
mX

j=1

�
j

H(u
j

v) =
mX

j=1

�
j

H(u
j

)H(v)

= H(
mX

j=1

�
j

u
j

)H(v) = H(x)H(v)

for all x 2 A and all v 2 U(A). By the same method as given above,
one can obtain that

H(xy) = H(x)H(y)

for all x, y 2 A. So the mapping H : A ! B is a C⇤-algebra homomor-
phism.

Theorem 4.5. Let h : A ! B be a mapping satisfying h(0) = 0
for which there exists a function ' : A2d ! [0,1) satisfying (3.i), (4.ii),
(4.v) and (4.vi). If h(tx) is continuous in t 2 R for each fixed x 2 A, then

there exists a unique C⇤
-algebra homomorphism H : A ! B satisfying

(4.iv).
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Proof. The proof is similar to the proofs of Theorems 4.3 and 4.4.

5. Homomorphisms between Poisson C⇤-algebras

A Poisson C⇤-algebra A is a C⇤-algebra with a C-bilinear map {·, ·} :
A⇥A ! A, called a Poisson bracket, such that (A, {·, ·}) is a complex
Lie algebra and

{ab, c} = a{b, c}+ {a, c}b
for all a, b, c 2 A. Poisson algebras have played an important role in
many mathematical areas and have been studied to find sympletic leaves
of the corresponding Poisson varieties. It is also important to find or
construct a Poisson bracket in the theory of Poisson algebra (see [3], [9],
[10], [25]).

Throughout this section, let A be a unital Poisson C⇤-algebra with
norm || · ||, unit e and unitary group U(A), and B a unital Poisson
C⇤-algebra with norm k · k.

Definition 5.1. A C⇤-algebra homomorphism H : A ! B is called
a Poisson C⇤-algebra homomorphism if H : A ! B satisfies

H({z, w}) = {H(z), H(w)}
for all z, w 2 A.

We are going to investigate Poisson C⇤-algebra homomorphisms be-
tween Poisson C⇤-algebras.

Theorem 5.2. Let h : A ! B be a mapping satisfying h(0) = 0 and

h(dnuy) = h(dnu)h(y) for all y 2 A, all u 2 U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ' : A2d+2 ! [0,1) such that

e'(x1, · · · , x2d, z, w) :=
1X

j=1

1

dj
'(djx1, · · · , djx2d, d

jz, djw) < 1,(5.i)

k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ {z, w}
2d

)� 2dh(
µx1 +

P2d
j=2(�1)j+1µx

j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)� {h(z),h(w)}k  '(x1, · · · , x2d, z, w),(5.ii)

kh(dnu⇤)� h(dnu)⇤k '(dnu, · · · , dnu| {z }
2d times

, 0, 0)(5.iii)
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for all u 2 U(A), all x1, · · · , x2d, z, w 2 A, all µ 2 T1
and n = 0, 1, 2, · · · .

Assume that (5.iv) lim
n!1

h(dne)
d

n is invertible. Then the mapping h :
A ! B is a Poisson C⇤

-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C⇤-algebra homomorphism H : A ! B such that

(5.v) kh(x)�H(x)k  1

2
e'(x, · · · , x| {z }

2d times

, 0, 0)

for all x 2 A. In the proof of Theorem 4.1, we showed that the C⇤-
algebra homomorphism H : A ! B is exactly the mapping h : A ! B.

It follows from (4.1) that

(5.1) H(x) = lim
n!1

h(d2nx)

d2n

for all x 2 A. Let x1 = · · · = x2d = 0 in (5.ii). Then we get

k2dh({z, w}
2d

)� {h(z), h(w)}k  '(0, · · · , 0| {z }
2d times

, z, w)

for all z, w 2 A. So

1

d2n
k2dh({d

nz, dnw}
2d

)� {h(dnz), h(dnw)}k  1

d2n
'(0, · · · , 0| {z }

2d times

, dnz, dnw)

 1

dn
'(0, · · · , 0| {z }

2d times

, dnz, dnw)(5.2)

for all z, w 2 A. By (5.i), (5.1) and (5.2),

2dH(
{z, w}
2d

) = lim
n!1

2dh(d2n {z,w}
2d )

d2n
= lim

n!1

2dh({d
n
z,d

n
w}

2d )

d2n

= lim
n!1

1

d2n
{h(dnz), h(dnw)} = lim

n!1
{h(d

nz)

dn
,
h(dnw)

dn
}

= {H(z), H(w)}
for all z, w 2 A. So

H({z, w}) = 2dH(
{z, w}
2d

) = {H(z), H(w)}
for all z, w 2 A.

Therefore, the mapping h : A ! B is a Poisson C⇤-algebra homomor-
phism.
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Now we prove the Cauchy-Rassias stability of Poisson C⇤-algebra ho-
momorphisms in unital Poisson C⇤-algebras.

Theorem 5.3. Let h : A ! B be a mapping satisfying h(0) = 0 for

which there exists a function ' : A2d+2 ! [0,1) satisfying (5.i), (5.ii)
and (5.iii) such that

(5.vi) kh(dnu · dnv)� h(dnu)h(dnv)k  '(dnu, dnv, 0, · · · , 0| {z }
2d times

)

for all u, v 2 U(A) and n = 0, 1, 2, · · · . Then there exists a unique

Poisson C⇤
-algebra homomorphism H : A ! B satisfying (5.v)

Proof. The proof is similar to the proofs of Theorems 4.4 and 5.1.

Remark 5.4. If each Poisson bracket {·, ·} in this section is replaced
by the Lie product [·, ·], which is defined in Section 8, one can obtain a
result for ‘Lie C⇤-algebra homomorphism’.

6. Cauchy-Rassias stability of homomorphisms in Poisson
Banach modules over a unital Poisson C⇤-algebra

A Poisson Banach module X over a Poisson C⇤-algebra A is a left
Banach A-module endowed with a C-bilinear map {·, ·} : A ⇥ X ! X
such that

{{a, b}, x} = {a, {b, x}}� {b, {a, x}},
{a, b} · x = a · {b, x}� {b, a · x}

for all a, b 2 A and all x 2 X (see [3], [9], [10], [25]). Here · denotes the
associative module action.

Throughout this section, assume thatA is a unital Poisson C⇤-algebra
with unitary group U(A), and that X and Y are left Poisson Banach
A-modules with norms || · || and k · k, respectively.

Definition 6.1. A C-linear mapping H : X ! Y is called a Poisson
module homomorphism if H : X ! Y satisfies

H({{a, b}, x}) = {{a, b}, H(x)},
H({a, b} · x) = {a, b} ·H(x)

for all a, b 2 A and all x 2 X.
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We are going to prove the Cauchy-Rassias stability of homomorphisms
in Poisson Banach modules over a unital Poisson C⇤-algebra.

Theorem 6.2. Let h : X ! Y be a mapping satisfying h(0) = 0 for

which there exists a function ' : X2d ! [0,1) satisfying (3.i) such that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

2d
)� 2dh(

µx1 +
P2d

j=2(�1)j+1µx
j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)k  '(x1, · · · , x2d),(6.i)

kh({{u, v}, x})� {{u, v}, h(x)}k  '(x, · · · , x| {z }
2d times

),(6.ii)

kh({u, v} · x)� {u, v} · h(x)k  '(x, · · · , x| {z }
2d times

)(6.iii)

for all µ 2 T1
, all x, x1, · · · , x2d 2 X and all u, v 2 U(A). Then there

exists a unique Poisson module homomorphism H : X ! Y such that

(6.iv) kh(x)�H(x)k  1

2
e'(x, · · · , x| {z }

2d times

)

for all x 2 X.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear mapping H : X ! Y satisfying (6.iv). The
C-linear mapping H : X ! Y is given by

(6.1) H(x) = lim
n!1

1

dn
h(dnx)

for all x 2 X.
By (6.ii),

k 1

dn
h(dn{{u, v}, x})� {{u, v}, 1

dn
h(dnx)}k

=
1

dn
kh({{u, v}, dnx})� {{u, v}, h(dnx)}k

 1

dn
'(dnx, · · · , dnx| {z }

2d times

),
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which tends to zero for all x 2 X by (3.i). So

H({{u, v}, x}) = lim
n!1

1

dn
h(dn{{u, v}, x}) = lim

n!1
{{u, v}, 1

dn
h(dnx)}

= {{u, v}, H(x)}
for all x 2 X and all u, v 2 U(A). Since H is C-linear and {·, ·} is
C-bilinear and since each a 2 A is a finite linear combination of unitary
elements, i.e., a =

P
m

j=1 �j

u
j

(�
j

2 C, u
j

2 U(A)),

H({{a, v}, x}) = H({{
mX

j=1

�
j

u
j

, v}, x}) =
mX

j=1

�
j

H({{u
j

, v}, x})

=
mX

j=1

�
j

{{u
j

, v}, H(x)} = {{
mX

j=1

�
j

u
j

, v}, H(x)} = {{a, v}, H(x)}

for all x 2 X and all v 2 U(A). Similarly, one can show that

H({{a, b}, x}) = {{a, b}, H(x)}
for all x 2 X and all a, b 2 A.

By (6.iii),

k 1

dn
h(dn{u, v} · x)� {u, v} · 1

dn
h(dnx)k(2)

=
1

dn
kh({u, v} · dnx)� {u, v} · h(dnx)k  1

dn
'(dnx, · · · , dnx| {z }

2d times

),

which tends to zero for all x 2 X by (3.i). So

H({u, v} · x) = lim
n!1

1

dn
h(dn{u, v} · x) = lim

n!1
({u, v} · 1

dn
h(dnx))

= {u, v} ·H(x)

for all x 2 X and all u, v 2 U(A). Since H is C-linear and {·, ·} is
C-bilinear and since each a 2 A is a finite linear combination of unitary
elements, i.e., a =

P
m

j=1 �j

u
j

(�
j

2 C, u
j

2 U(A)),

H({a, v} · x) = H({
mX

j=1

�
j

u
j

, v} · x) =
mX

j=1

�
j

H({u
j

, v} · x)

=
mX

j=1

�
j

{u
j

, v} ·H(x) = {
mX

j=1

�
j

u
j

, v} ·H(x) = {a, v} ·H(x)
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for all x 2 X and all v 2 U(A). Similarly, one can show that

H({a, b} · x) = {a, b} ·H(x)

for all x 2 X and all a, b 2 A. Thus H : X ! Y is a Poisson module
homomorphism.

Therefore, there exists a unique Poisson module homomorphism H :
X ! Y satisfying (6.iv).

Corollary 6.3. Let h : X ! Y be a mapping satisfying h(0) = 0
for which there exist constants ✓ � 0 and p 2 [0, 1) such that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

2d
)� 2dh(

µx1 +
P2d

j=2(�1)j+1µx
j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)k  ✓
2dX

j=1

||x
j

||p,

kh({{u, v}, x})� {{u, v}, h(x)}k  2d✓||x||p,
kh({u, v} · x)� {u, v} · h(x)k  2d✓||x||p

for all µ 2 T1
, all u, v 2 U(A), n = 0, 1, 2, · · · , and all x, x1, · · · , x2d 2 X.

Then there exists a unique Poisson module homomorphism H : X ! Y
such that

kh(x)�H(x)k  dp+1

d� dp
✓||x||p

for all x 2 X.

Proof. Define '(x1, · · · , x2d) = ✓
P2d

j=1 ||xj

||p, and apply Theorem 6.1.

7. Homomorphisms between Poisson JC⇤-algebras

The original motivation to introduce the class of nonassociative alge-
bras known as Jordan algebras came from quantum mechanics (see [24]).
Let L(H) be the real vector space of all bounded self-adjoint linear op-
erators on H, interpreted as the (bounded) observables of the system. In
1932, Jordan observed that L(H) is a (nonassociative) algebra via the
anticommutator product x � y := xy+yx

2 . A commutative algebra X with
product x � y is called a Jordan algebra. A unital Jordan C⇤-subalgebra
of a C⇤-algebra, endowed with the anticommutator product, is called a
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JC⇤-algebra. A Poisson C⇤-algebra, endowed with the anticommutator
product, is called a Poisson JC⇤-algebra.

Throughout this section, assume that A is a unital Poisson JC⇤-
algebra with unit e, norm || · || and unitary group U(A), and that B is
a unital Poisson JC⇤-algebra with unit e0 and norm k · k.

Definition 7.1. A C-linear mapping H : A ! B is called a Poisson
JC⇤-algebra homomorphism if H : A ! B satisfies

H(x � y) = H(x) �H(y),

H({x, y}) = {H(x), H(y)}
for all x, y 2 A.

We are going to investigate Poisson JC⇤-algebra homomorphisms be-
tween Poisson JC⇤-algebras.

Theorem 7.2. Let h : A ! B be a mapping satisfying h(0) = 0 and

h(dnu�y) = h(dnu)�h(y) for all y 2 A, all u 2 U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ' : A2d+2 ! [0,1) satisfying (5.i) such
that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ {z, w}
2d

)� 2dh(
µx1 +

P2d
j=2(�1)j+1µx

j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)� {h(z), h(w)}k  '(x1, · · · , x2d, z, w),(7.i)

for all x1, · · · , x2d, z, w 2 A, and all µ 2 T1
. Assume that (7.ii)

lim
n!1

h(dne)
d

n = e0. Then the mapping h : A ! B is a Poisson JC⇤
-

algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear mapping H : A ! B satisfying (5.v).

Since h(dnu � y) = h(dnu) � h(y) for all y 2 A, all u 2 U(A) and
n = 0, 1, 2, · · · ,

(7.1) H(u�y) = lim
n!1

1

dn
h(dnu�y) = lim

n!1

1

dn
h(dnu)�h(y) = H(u)�h(y)

for all y 2 A and all u 2 U(A). By the additivity of H and (7.1),

dnH(u � y) = H(dnu � y) = H(u � (dny)) = H(u) � h(dny)
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for all y 2 A and all u 2 U(A). Hence

(7.2) H(u � y) = 1

dn
H(u) � h(dny) = H(u) � 1

dn
h(dny)

for all y 2 A and all u 2 U(A). Taking the limit in (7.2) as n ! 1, we
obtain

(7.3) H(u � y) = H(u) �H(y)

for all y 2 A and all u 2 U(A). Since H is C-linear and each x 2 A is a
finite linear combination of unitary elements i.e., x =

P
m

j=1 �j

u
j

(�
j

2
C, u

j

2 U(A)),

H(x � y) = H(
mX

j=1

�
j

u
j

� y) =
mX

j=1

�
j

H(u
j

� y) =
mX

j=1

�
j

H(u
j

) �H(y)

= H(
mX

j=1

�
j

u
j

) �H(y) = H(x) �H(y)

for all x, y 2 A.
By (7.ii), (7.1) and (7.3),

H(y) = H(e � y) = H(e) � h(y) = e0 � h(y) = h(y)

for all y 2 A. So

H(y) = h(y)

for all y 2 A.
The rest of the proof is similar to the proof of Theorem 5.1.

Corollary 7.3. Let h : A ! B be a mapping satisfying h(0) = 0
and h(dnu � y) = h(dnu) � h(y) for all u 2 U(A), all y 2 A, and all

n = 0, 1, 2, · · · , for which there exist constants ✓ � 0 and p 2 [0, 1) such
that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ {z, w}
2d

)� 2dh(
µx1 +

P2d
j=2(�1)j+1µx

j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)� {h(z), h(w)}k  ✓

2dX

j=1

||x
j

||p + ||z||p + ||w||p

for all µ 2 T1
, n = 0, 1, 2, · · · , and all x1, · · · , x2d, z, w 2 A. Assume

that lim
n!1

h(dne)
d

n = e0. Then the mapping h : A ! B is a Poisson

JC⇤
-algebra homomorphism.
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Proof. Define '(x1, · · · , x2d, z, w) = ✓
P2d

j=1 ||xj

||p+ ||z||p+ ||w||p, and
apply Theorem 7.1.

Theorem 7.4. Let h : A ! B be a mapping satisfying h(dx) = dh(x)
for all x 2 A for which there exists a function ' : A2d+2 ! [0,1)
satisfying (5.i), (7.i) and (7.ii) such that

(7.iii) kh(dnu � y)� h(dnu) � h(y)k  '(u, y, 0, · · · , 0| {z }
2d times

)

for all y 2 A, all u 2 U(A) and n = 0, 1, 2, · · · . Then the mapping

h : A ! B is a Poisson JC⇤
-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear mapping H : A ! B satisfying (5.v).

By (7.iii) and the assumption that h(dx) = dh(x) for all x 2 A,

kh(dnu � y)� h(dnu) � h(y)k
=

1

d2m
kh(dmdnu � dmy)� h(dmdnu) � h(dmy)k

 1

d2m
'(dmu, dmy, 0, · · · , 0| {z }

2d times

)  1

dm
'(dmu, dmy, 0, · · · , 0| {z }

2d times

),

which tends to zero as m ! 1 by (5.i). So

h(dnu � y) = h(dnu) � h(y)
for all y 2 A, all u 2 U(A) and n = 0, 1, 2, · · · . But by (4.1),

H(x) = lim
n!1

1

dn
h(dnx) = h(x)

for all x 2 A.
The rest of the proof is similar to the proof of Theorem 5.1.

Now we are going to show the Cauchy-Rassias stability of homomor-
phisms in Poisson JC⇤-algebras.

Theorem 7.5. Let h : A ! B be a mapping satisfying h(0) = 0 for

which there exists a function ' : A2d+4 ! [0,1) such that

e'(x1, · · · , x2d, z, w, a, b)

:=
1X

j=1

1

dj
'(djx1, · · · , djx2d, d

jz, djw, dja, djb) < 1,(7.iv)
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k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ {z, w}+ a � b
2d

)(7.v)

� 2dh(
µx1 +

P2d
j=2(�1)j+1µx

j

2d
)� 2

2dX

j=2

(�1)jµh(x
j

)

� {h(z), h(w)}� h(a) � h(b)k
 '(x1, · · · , x2d, z, w, a, b)

for all µ 2 T1
and all x1, · · · , x2d, z, w, a, b 2 A. Then there exists a

unique Poisson JC⇤
-algebra homomorphism H : A ! B such that

(7.vi) kh(x)�H(x)k  1

2
e'(x, · · · , x| {z }

2d times

, 0, 0, 0, 0)

for all x 2 A.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear mapping H : A ! B satisfying (7.vi).

The rest of the proof is similar to the proofs of Theorems 4.1 and
5.1.

8. Homomorphisms between Lie JC⇤-algebras

A unital C⇤-algebra C, endowed with the Lie product [x, y] = xy�yx

2
on C, is called a Lie C⇤-algebra. A unital C⇤-algebra C, endowed with
the Lie product [·, ·] and the anticommutator product �, is called a Lie
JC⇤-algebra if (C, �) is a JC⇤-algebra and (C, [·, ·]) is a Lie C⇤-algebra
(see [3], [9], [10]).

Throughout this paper, let A be a unital Lie JC⇤-algebra with norm
|| · ||, unit e and unitary group U(A) = {u 2 A | uu⇤ = u⇤u = e}, and B
a unital Lie JC⇤-algebra with norm k · k and unit e0.

Definition 8.1. A C-linear mapping H : A ! B is called a Lie
JC⇤-algebra homomorphism if H : A ! B satisfies

H(x � y) = H(x) �H(y),

H([x, y]) = [H(x), H(y)],

H(x⇤) = H(x)⇤

for all x, y 2 A.
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Remark 8.2. A C-linear mapping H : A ! B is a C⇤-algebra homo-
morphism if and only if the mapping H : A ! B is a Lie JC⇤-algebra
homomorphism.

Assume that H is a Lie JC⇤-algebra homomorphism. Then

H(xy) = H([x, y] + x � y) = H([x, y]) +H(x � y)
= [H(x), H(y)] +H(x) �H(y) = H(x)H(y)

for all x, y 2 A. So H is a C⇤-algebra homomorphism.
Assume that H is a C⇤-algebra homomorphism. Then

H([x, y] = H(
xy � yx

2
) =

H(x)H(y)�H(y)H(x)

2
= [H(x), H(y)],

H(x � y) = H(
xy + yx

2
) =

H(x)H(y) +H(y)H(x)

2
= H(x) �H(y)

for all x, y 2 A. So H is a Lie JC⇤-algebra homomorphism.

We are going to investigate Lie JC⇤-algebra homomorphisms between
Lie JC⇤-algebras.

Theorem 8.3. Let h : A ! B be a mapping satisfying h(0) = 0 and

h(dnu�y) = h(dnu)�h(y) for all y 2 A, all u 2 U(A) and n = 0, 1, 2, · · · ,
for which there exists a function ' : A2d+2 ! [0,1) satisfying (5.i) and
(5.iii) such that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ [z, w]

2d
)� 2dh(

µx1 +
P2d

j=2(�1)j+1µx
j

2d
)

�2
2dX

j=2

(�1)jµh(x
j

)� [h(z), h(w)]k  '(x1, · · · , x2d, z, w),(8.i)

for all µ 2 T1
, and all x1, · · · , x2d, z, w 2 A. Assume that lim

n!1
h(dne)
d

n =
e0. Then the mapping h : A ! B is a Lie JC⇤

-algebra homomorphism.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear involutive mapping H : A ! B satisfying (5.v).

In the proof of Theorem 7.1, we showed that

H(x � y) = H(x) �H(y)

for all x, y 2 A, and that the mappingH : A ! B is exactly the mapping
h : A ! B.



Stability of Homomorphisms in Banach Modules over a C

⇤-Algebra 115

It follows from (4.1) that

(8.1) H(x) = lim
n!1

h(d2nx)

d2n

for all x 2 A. Let x1 = · · · = x2d = 0 in (8.i). Then we get

k2dh( [z, w]
2d

)� [h(z), h(w)]k  '(0, · · · , 0| {z }
2d times

, z, w)

for all z, w 2 A. So

1

d2n
k2dh( [d

nz, dnw]

2d
)� [h(dnz), h(dnw)]k  1

d2n
'(0, · · · , 0| {z }

2d times

, dnz, dnw)

 1

dn
'(0, · · · , 0| {z }

2d times

, dnz, dnw)(8.2)

for all z, w 2 A. By (5.i), (8.1), and (8.2),

2dH(
[z, w]

2d
) = lim

n!1

2dh(d2n [z,w]
2d )

d2n
= lim

n!1

2dh( [d
n
z,d

n
w]

2d )

d2n

= lim
n!1

1

d2n
[h(dnz), h(dnw)] = lim

n!1
[
h(dnz)

dn
,
h(dnw)

dn
]

= [H(z), H(w)]

for all z, w 2 A. So

H([z, w]) = 2dH(
[z, w]

2d
) = [H(z), H(w)]

for all z, w 2 A.

Therefore, the mapping h : A ! B is a Lie JC⇤-algebra homomor-
phism.

We are going to show the Cauchy-Rassias stability of Lie JC⇤-algebra
homomorphisms in Lie JC⇤-algebras.

Theorem 8.4. Let h : A ! B be a mapping satisfying h(0) = 0 for

which there exists a function ' : A2d+4 ! [0,1) satisfying (7.iv) such
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that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ [z, w] + a � b
2d

)(8.ii)

� 2dh(
µx1 +

P2d
j=2(�1)j+1µx

j

2d
)� 2

2dX

j=2

(�1)jµh(x
j

)

� [h(z), h(w)]� h(a) � h(b)k
 '(x1, · · · , x2d, z, w, a, b),

kh(dnu⇤)� h(dnu)⇤k  '(2nu, · · · , 2nu| {z }
2d times

, 0, 0, 0, 0)(8.iii)

for all µ 2 T1
, all u 2 U(A), n = 0, 1, 2, · · · , and all x1, · · · , x2d, z, w, a, b 2

A. Then there exists a unique Lie JC⇤
-algebra homomorphism H : A !

B satisfying (7.vi).

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear involutive mapping H : A ! B satisfying (7.vi).

The rest of the proof is similar to the proof of Theorem 8.1.

9. Cauchy-Rassias stability of Lie JC⇤-algebra derivations in
Lie JC⇤-algebras

Definition 9.1. A C-linear mapping D : A ! A is called a Lie
JC⇤-algebra derivation if D : A ! A satisfies

D(x � y) = (Dx) � y + x � (Dy),

D([x, y]) = [Dx, y] + [x,Dy],

D(x⇤) = D(x)⇤

for all x, y 2 A.

Remark 9.2. A C-linear mapping D : A ! A is a C⇤-algebra deriva-
tion if and only if the mapping D : A ! A is a Lie JC⇤-algebra deriva-
tion.

Assume that D is a Lie JC⇤-algebra derivation. Then

D(xy) = D([x, y] + x � y) = D([x, y]) +D(x � y)
= [Dx, y] + [x,Dy] + (Dx) � y + x � (Dy) = (Dx)y + x(Dy)



Stability of Homomorphisms in Banach Modules over a C

⇤-Algebra 117

for all x, y 2 A. So D is a C⇤-algebra derivation.
Assume that D is a C⇤-algebra derivation. Then

D([x, y]) = D(
xy � yx

2
) =

(Dx)y + x(Dy)� (Dy)x� y(Dx)

2
= [Dx, y] + [x,Dy],

D(x � y) = D(
xy + yx

2
) =

(Dx)y + x(Dy) + (Dy)x+ y(Dx)

2
= (Dx) � y + x � (Dy)

for all x, y 2 A. So H is a Lie JC⇤-algebra derivation.

We prove the Cauchy–Rassias stability of Lie JC⇤-algebra derivations
in Lie JC⇤-algebras.

Theorem 9.3. Let h : A ! A be a mapping satisfying h(0) = 0 for

which there exists a function ' : A2d+4 ! [0,1) satisfying (7.iv) and

(8.iii) such that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ [z, w] + a � b
2d

)(9.i)

� 2dh(
µx1 +

P2d
j=2(�1)j+1µx

j

2d
)� 2

2dX

j=2

(�1)jµh(x
j

)

� [h(z), w]� [z, h(w)]� h(a) � b� a � h(b)k
 '(x1, · · · , x2d, z, w, a, b)

for all µ 2 T1
and all x1, · · · , x2d, z, w, a, b 2 A. Then there exists a

unique Lie JC⇤
-algebra derivation D : A ! A such that

(9.ii) kh(x)�D(x)k  1

2
e'(x, · · · , x| {z }

2d times

, 0, 0, 0, 0)

for all x 2 A.

Proof. By the same reasoning as in the proof of Theorem 4.1, there
exists a unique C-linear involutive mapping D : A ! A satisfying (9.ii).
The mapping D : A ! A is given by

(9.1) D(x) = lim
n!1

1

dn
h(dnx)

for all x 2 A.
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It follows from (9.1) that

(9.2) D(x) = lim
n!1

h(d2nx)

d2n

for all x 2 A. Let x1 = · · · = x2d = a = b = 0 in (9.i). Then we get

k2dh( [z, w]
2d

)� [h(z), w]� [z, h(w)]k  '(0, · · · , 0| {z }
2d times

, z, w, 0, 0)

for all z, w 2 A. Since

1

d2n
'(0, · · · , 0| {z }

2d times

, dnz, dnw, 0, 0)  1

dn
'(0, · · · , 0| {z }

2d times

, dnz, dnw, 0, 0),

1

d2n
k2dh( [d

nz, dnw]

2d
)� [h(dnz), dnw]� [dnz, h(dnw)]k

 1

d2n
'(0, · · · , 0| {z }

2d times

, dnz, dnw, 0, 0)(9.3)

 1

dn
'(0, 0, dnz, dnw, 0, 0)

for all z, w 2 A. By (7.iv), (9.2), and (9.3),

2dD(
[z, w]

2d
) = lim

n!1

2dh(d2n [z,w]
2d )

d2n
= lim

n!1

2dh( [d
n
z,d

n
w]

2d )

d2n

= lim
n!1

([
h(dnz)

dn
,
dnw

dn
] + [

dnz

dn
,
h(dnw)

dn
])

= [D(z), w] + [z,D(w)]

for all z, w 2 A. So

D([z, w]) = 2dD(
[z, w]

2d
) = [D(z), w] + [z,D(w)]

for all z, w 2 A.
Similarly, one can obtain that

2dD(
a � b
2d

) = lim
n!1

2dh(d
2n

a�b
2d )

d2n
= lim

n!1

2dh( (d
n
a)�(dnb)
2d )

d2n

= lim
n!1

✓
(
h(dna)

dn
) � (d

nb

dn
) + (

dna

dn
� (h(d

nb)

dn
)

◆

= (Da) � b+ a � (Db)
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for all a, b 2 A. So

D(a � b) = 2dD(
a � b
2d

) = (Da) � b+ a � (Db)

for all a, b 2 A.
Hence the mapping D : A ! A is a Lie JC⇤-algebra derivation

satisfying (9.ii), as desired.

Corollary 9.4. Let h : A ! A be a mapping satisfying h(0) = 0
for which there exist constants ✓ � 0 and p 2 [0, 1) such that

k2dh(µx1 +
P2d

j=2(�1)jµx
j

+ [z, w] + a � b
2d

)

� 2dh(
µx1 +

P2d
j=2(�1)j+1µx

j

2d
)� 2

2dX

j=2

(�1)jµh(x
j

)

� [h(z), w]� [z, h(w)]� h(a) � b� a � h(b)k

 ✓
2dX

j=1

kx
j

kp + kzkp + kwkp + kakp + kbkp,

kh(dnu⇤)� h(dnu)⇤k  2d · dnp✓
for all µ 2 T1

, all u 2 U(A), n = 0, 1, 2, · · · , and all x1, · · · , x2d, z, w, a, b 2
A. Then there exists a unique Lie JC⇤

-algebra derivation D : A ! A
such that

kh(x)�D(x)k  dp+1

d� dp
✓kxkp

for all x 2 A.

Proof. Define '(x1, · · · , x2d, z, w, a, b) = ✓(
P2d

j=1 kxj

kp+kzkp+kwkp+
kakp + kbkp), and apply Theorem 9.1.
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