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PERTURBATION ANAYSIS FOR THE MATRIX

EQUATION X = I − A∗X−1A+B∗X−1B

Hosoo Lee

Abstract. The purpose of this paper is to study the perturbation
analysis of the matrix equation X = I−A∗X−1A+B∗X−1B. Based
on the matrix differentiation, we give a precise perturbation bound
for the positive definite solution. A numerical example is presented
to illustrate the shrpness of the perturbation bound.

1. Introduction

We consider the matrix equation

(1.1) X = Q− A∗X−1A+B∗X−1B,

where A,B are arbitrary n×n matrices. Some special cases of Equation
(1.1) are problems of practical importance, such as the matrix equation
X + M∗X−1M = Q that arises in the control theory, ladder networks,
dynamic programming, stochastic filtering, statistics, and so on [5, 8,
10]. The matrix equation X −M∗X−1M = Q arises in the analysis of
stationary Gaussian reciprocal processes over a finite interval [1, 7].

In [2], Berzig, Duan and Samet established the existence and unique-
ness of a positive definite solution of (1.1) via the Bhaskar-Lakshkanthan
coupled fixed point theorem([3]).
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Theorem 1.1 ([2]). If there exist a, b > 0 satisfying following condi-
tions

(i) a−1A∗A+ aI ≤ Q ≤ bI,
(ii) bA∗A− aB∗B ≤ ab(Q− aI),
(iii) bB∗B − aA∗A ≤ ab(bI −Q),

(iv) A∗A < a2

2
I, B∗B < a2

2
I

then (1.1) has a unique solution X ∈ [aI,∞) and

X ∈ [Q+ b−1B∗B − a−1A∗A, Q+ a−1B∗B − b−1A∗A].

The following result is immediate consequence of Theorem 1.1.

Theorem 1.2. If there exist 0 < a ≤ 2
3

such that

A∗A ≤ a2

2
I, B∗B ≤ a2

2
I,

then the matrix equation

(1.2) X = I − A∗X−1A+B∗X−1B.

has a unique solution XU ∈ [aI,∞) and

(1.3) XU ∈
[
I +

2

2 + a
B∗B − 1

a
A∗A, I +

1

a
B∗B − 2

2 + a
A∗A

]
.

In this paper, we study the perturbation analysis of the matrix equa-
tion (1.2). Based on the matrix differentiation, we firstly give a differ-
ential bound for the unique solution of (1.2) in certain set, and then use
it to derive a precise perturbation bound. A numerical example is used
to show that the perturbation bound is very sharp.

Throughout this paper, we write B > 0 (B ≥ 0) if the matrix B is
positive definite (semidefinite). If B − C is positive definite (semidefi-
nite), then we write B > C (B ≥ C). If a positive definite matrix X
satisfies B ≤ X ≤ C, we denote that X ∈ [B,C]. The symbols λ1(B)
and λn(B) denote the maximal and minimal eigenvalues of an n × n
Hermitian matrix B, respectively. The symbol ‖B‖ denotes the spectral
norm of the matrix B.

2. Perturbation Analysis for the Matrix equation (1.2)

Based on the matrix differentiation, we firstly give a differential bound
for the unique positive definite solution XU of (1.2), and then use it to
derive a precise perturbation bound for XU in this section.



Perturbation Anaysis for the Matrix equation 125

Definition 2.1. ([6, 9]) Let F = (fij)mn, then the matrix differenti-
ation of F is dF = (dfij)mn. For example, let

F =

(
s+ t s2 − 2t

2s+ t3 t2

)
.

Then

dF =

(
ds+ dt 2sds− 2dt

2ds+ 3t2dt 2tdt

)
.

Lemma 2.2 ([6, 9]). The matrix differentiation has the following prop-
erties:

(1) dA = 0 for a constant matrix A;
(2) d(αX) = α(dX), where α is a complex number;
(3) d(X + Y ) = dX + dY ;
(4) d(XY ) = (dX)Y +X(DY );
(5) d(X∗) = (dX)∗;
(6) d(X−1) = −X−1(DX)X−1.

Theorem 2.3. If there exist 0 < a ≤ 1
2

such that

(2.4) ‖A‖2 ≤ a2

2
, ‖B‖2 ≤ a2

2
,

then then (1.2) has a unique solution XU ∈ [aI,∞), and it satisfies

(2.5) ‖dXU‖ ≤
2a(‖A‖ ‖dA‖+ ‖B‖ ‖dB‖)

a2 − ‖A‖2 − ‖B‖2
.

Proof. Since
λ1(A

∗A) ≤ ‖A∗A‖ ≤ ‖A‖2,
λ1(B

∗B) ≤ ‖B∗B‖ ≤ ‖B‖2

then

(2.6)
A∗A ≤ λ1(A

∗A)I ≤ ‖A∗A‖I ≤ ‖A‖2I,
B∗B ≤ λ1(B

∗B)I ≤ ‖B∗B‖I ≤ ‖B‖2I.
Combining (2.4) and (2.6) we haver

A∗A ≤ a2

2
I, B∗B ≤ a2

2
I.

Then by Theorem 1.2 we have that (1.2) has a unique solution XU in
[aI,∞), which satisfies

(2.7) XU ∈
[
I +

2

2 + a
B∗B − 1

a
A∗A, I +

1

a
B∗B − 2

2 + a
A∗A

]
.
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Since XU is the unique solution of (1.2) in [aI,∞),

(2.8) XU + A∗XUA−B∗XUB = I.

It is known that the elements of XU are differentiable functions of the
elements of A and B. Differentianting (2.8), and by Lemma 2.2, we have

dXU + (dA∗)X−1U A− A∗X−1U (dXU)X−1U A+ A∗X−1U (dA)

−(dB∗)X−1U B +B∗X−1U (dXU)X−1U B −B∗X−1U (dB) = 0,

which implies that
(2.9)

dXU − A∗X−1U (dXU)X−1U A+B∗X−1U (dXU)X−1U B
= −(dA∗)X−1U A− A∗X−1U (dA) + (dB∗)X−1U B +B∗X−1U (dB).

By taking spectral norm for both sides of (2.9), we have that
(2.10)
‖ − (dA∗)X−1U A− A∗X−1U (dA) + (dB∗)X−1U B +B∗X−1U (dB)‖
≤ ‖(dA∗)X−1U A‖+ ‖A∗X−1U (dA)‖+ ‖(dB∗)X−1U B‖+ ‖B∗X−1U (dB)‖
≤ ‖dA∗‖‖X−1U ‖‖A‖+ ‖A∗‖‖X−1U ‖‖dA‖+ ‖dB∗‖‖X−1U ‖‖B‖

+‖B∗‖‖X−1U ‖‖dB‖
= 2‖X−1U ‖(‖dA‖‖A‖+ ‖dB‖‖B‖)
≤ 2

a
(‖dA‖‖A‖+ ‖dB‖‖B‖)

and

(2.11)

‖dXU − A∗X−1U (dXU)X−1U A+B∗X−1U (dXU)X−1U B‖
≥ ‖dXU‖ − ‖A∗X−1U (dXU)X−1U A‖ − ‖B∗X−1U (dXU)X−1U B‖
≥ ‖dXU‖ − ‖A∗‖‖X−1U ‖‖dXU‖‖X−1U ‖‖A‖

−‖B∗‖‖X−1U ‖‖dXU‖‖X−1U ‖‖B‖
=
(
1− ‖A‖2‖X−1U ‖2 − ‖B‖2‖X

−1
U ‖2

)
‖dXU‖

≥
(

1− ‖A‖
2

a2
− ‖B‖

2

a2

)
‖dXU‖.

Due to (2.4) we have

(2.12) 1− ‖A‖
2

a2
− ‖B‖

2

a2
> 0.

Combination (2.10),(2.11) and noting (2.12), we have(
1− ‖A‖

2

a2
− ‖B‖

2

a2

)
‖dXU‖ ≤

2

a
(‖dA‖‖A‖+ ‖dB‖‖B‖)
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which implies to

‖dXU‖ ≤
2a(‖A‖ ‖dA‖+ ‖B‖ ‖dB‖)

a2 − ‖A‖2 − ‖B‖2
.

Theorem 2.4. Let Ã, B̃ be perturbed matrices of A,B in (1.2) and
∆A = Ã− A, ∆B = B̃ −B. If there exist 0 < a ≤ 1

2
such that

‖A‖2 ≤ a2

2
, ‖B‖2 ≤ a2

2
,(2.13)

2‖A‖‖∆A‖+ ‖∆A‖2 < a2

2
− ‖A‖2,(2.14)

2‖B‖‖∆B‖+ ‖∆B‖2 < a2

2
− ‖B‖2,(2.15)

then then (1.2) and its perturbed equation

(2.16) X̃ = I − Ã∗X̃−1Ã+ B̃∗X̃−1B̃

have a unique solutions XU and X̃U in [aI,∞), respectively, which satisfy∥∥∥X̃U −XU

∥∥∥ ≤ Serr

where

Serr =
2a(‖A‖‖∆A‖+ ‖∆A‖2 + ‖B‖‖∆B‖+ ‖∆B‖2)

a2 − (‖A‖+ ‖∆A‖)2 − (‖B‖+ ‖∆B‖)2
.

Proof. Set A(t) = A + t∆A and B(t) = B + t∆B, t ∈ [0, 1] then by
(2.14)

(2.17)

‖A(t)‖2 = ‖A+ t∆A‖2 ≤ (‖A‖+ t‖∆A‖)2
= ‖A‖2 + 2t‖A‖‖∆A‖+ t2‖∆A‖2
≤ ‖A‖2 + 2‖A‖‖∆A‖+ ‖∆A‖2
< ‖A‖2 + a2

2
− ‖A‖2 = a2

2
,

similarly, by (2.15) we have

(2.18) ‖B(t)‖2 < a2

2
.

By (2.17), (2.18) and Theorem 2.3 we derive that for arbitrary t ∈ [0, 1],
the matrix equation

X = I − A(t)∗X−1A(t) +B(t)∗X−1B(t)
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has a unique solution XU(t) in [aI,∞), especially,

XU(0) = XU , XU(1) = (X̃)U ,

where XU and X̃U are the unique solutions of (1.2) and (2.16), respec-
tively.

From Theorem 2.3 it follows that∥∥∥X̃U −XU

∥∥∥ = ‖XU(1)−XU(0)‖ =

∥∥∥∥∫ 1

0

dXU(t)

∥∥∥∥ ≤ ∫ 1

0

‖dXU(t)‖

≤
∫ 1

0

2a(‖A(t)‖ ‖dA(t)‖+ ‖B(t)‖ ‖dB(t)‖)
a2 − ‖A(t)‖2 − ‖B(t)‖2

≤
∫ 1

0

2a(‖A(t)‖ ‖∆A‖dt+ ‖B(t)‖ ‖∆B‖dt)
a2 − ‖A(t)‖2 − ‖B(t)‖2

≤
∫ 1

0

2a(‖A(t)‖ ‖∆A‖+ ‖B(t)‖ ‖∆B‖)
a2 − ‖A(t)‖2 − ‖B(t)‖2

dt.

Noting that

‖A(t)‖ = ‖A+ t∆A‖ ≤ ‖A‖+ t‖∆A‖,

‖B(t)‖ = ‖B + t∆B‖ ≤ ‖B‖+ t‖∆B‖,

and combining Mean Value Theorem of Integration, we have∥∥∥X̃U −XU

∥∥∥
≤

∫ 1

0

2a(‖A(t)‖ ‖∆A‖+ ‖B(t)‖ ‖∆B‖)
a2 − ‖A(t)‖2 − ‖B(t)‖2

dt

≤
∫ 1

0

2a((‖A‖+ t‖∆A‖) ‖∆A‖+ (‖B‖+ t‖∆B‖) ‖∆B‖)
a2 − (‖A‖+ t‖∆A‖)2 − (‖B‖+ t‖∆B‖)2

dt

≤ 2a((‖A‖+ ξ‖∆A‖) ‖∆A‖+ (‖B‖+ ξ‖∆B‖) ‖∆B‖)
a2 − (‖A‖+ ξ‖∆A‖)2 − (‖B‖+ ξ‖∆B‖)2

×(1− 0) (0 < ξ < 1)

≤ 2a((‖A‖+ ‖∆A‖) ‖∆A‖+ (‖B‖+ ‖∆B‖) ‖∆B‖)
a2 − (‖A‖+ ‖∆A‖)2 − (‖B‖+ ‖∆B‖)2

= Serr.
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3. Numerical Experiments

In this section, we use a numerical example to confirm the correctness
of Theorem 2.4 and the precision of the perturbation bound for the
unique positive definite solution XU of (1.2).

Example 3.1. Consider the matrix equation

X = I − A∗X−1A+B∗X−1B,

and its pertubed equation

(3.19) X̃ = I − Ã∗X̃−1Ã+ B̃∗X̃−1B̃,

where

A =

 0.1 0.05 0
0 0.05 −0.02

0.05 −0.05 −0.05

 , Ã = A+

 0.5 0.1 −0.1
−0.1 0.5 0.5
−0.2 0.1 −0.1

× 10−j,

B =

 −0.05 0.1 0
−0.05 0 −0.05
0.05 0 −0.1

 ,B̃ = B +

 0.1 0.02 0.05
−0.2 0.12 0.14
−0.25 0.2 0.26

× 10−j,

j ∈ N.

It is easy to verify that the conditions (2.13)-(2.15) are satisfied with
a = 0.5, then (1.2) and its perturbed equation (3.19) have unique positive
definite solutions XU and X̃U , respectively. From Berzig, Duan and
Samet [2] it follows that the sequence {Xk} and {Yk} generated by the
iterative method

X0 = 0.5I, Y0 = 5I,
Xk+1 = I − A∗X−1k A+B∗Y −1k B
Yk+1 = I − A∗Y −1k A+B∗X−1k B, k = 0, 1, 2, . . . .

both convege to XU . Choose τ = 1.0× 10−15 as the termination scalar,
that is,

R(Xk) = ‖Xk + A∗X−1k A−B∗X−1k B − I‖
R(Yk) = ‖Yk + A∗Y −1k A−B∗Y −1k B − I‖

and

R(X) = max{R(Xk), R(YK)} ≤ τ = 1.0× 10−15.

By using the iterative method we can get the computed solution X of
(1.2). Since R(X) < 1.0 × 10−15, then the computed solution X has a
very high precision. For simplicity, we write the computed solution as
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the unique positive definite solution XU . Similarly, we can also get the
unique positive definite solution X̃U of the perturbed equation (3.19).

Some numerical results on the perturbation bounds for the unique
positive definite solution XU are listed in Table 1. From Table 1, we
see that Theorem 2.4 gives a precise perturbation bound for the unique
positive definite solution of (1.2).

Table 1. Numerical results for the different value of j

j 2 3 4 5 6

‖X̃U −XU‖/‖XU‖ 1.644× 10−3 1.604× 10−4 1.600× 10−5 1.599× 10−6 1.600× 10−7

Serr/‖XU‖ 7.867× 10−3 7.356× 10−4 7.305× 10−5 7.300× 10−6 7.299× 10−7
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