Korean J. Math. **22** (2014), No. 1, pp. 133–138 http://dx.doi.org/10.11568/kjm.2014.22.1.133

ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE

SUNG-HO PARK

ABSTRACT. We show that a compact immersed annular Bryant surface in \mathbb{H}^3 meeting two parallel horospheres in constant contact angles is rotational.

1. introduction

Catenoid is the only nonplanar minimal surface of rotation in \mathbb{R}^3 . Therefore a catenoid meets each plane perpendicular to the axis of rotation in constant contact angle. Conversely, if a compact embedded minimal or constant mean curvature (cmc) surface in \mathbb{R}^3 meets two parallel planes in constant contact angles, then the surface is part of a catenoid or part of a cmc surface of rotation, i.e., a Delaunay surface. This can be proved by using the Alexandrov's moving plane argument [4], [11] to planes perpendicular to the parallel planes. Recently, Pyo showed that a compact immersed minimal annulus meeting two parallel planes in constant contact angles is also part of a catenoid [9]. In the case of cmc surfaces, the result fails to hold: Wente constructed examples of immersed constant mean curvature annuli in a slab or in a ball meeting the boundary planes or the boundary sphere perpendicularly [12].

Received November 12, 2013. Revised March 17, 2014. Accepted March 17, 2014. 2010 Mathematics Subject Classification: 53A10, 53C24.

Key words and phrases: Bryant Surface, Hyperbolic space, Capillarity.

This work was supported by Hankuk University of Foreign Studies Research Fund. (c) The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

S.-H. Park

The hyperbolic gauss map of a Bryant surface in \mathbb{H}^3 is meromorphic as the gauss map of a minimal surface in \mathbb{R}^3 is meromorphic [2]. Morevoer, the cousin correspondence [5] shows a close relation between minimal surfaces in \mathbb{R}^3 and Bryant surfaces in \mathbb{H}^3 : for each simply connected minimal surface in \mathbb{R}^3 , there exists a differentiable, 2π -periodic family of Bryant surfaces in \mathbb{H}^3 . The cousin of a plane in \mathbb{R}^3 is the associate surfaces of a horosphere in \mathbb{H}^3 . The cousin of the catenoid is called the catenoid cousin. In this paper, we generalize Pyo's result to Bryant surfaces in \mathbb{H}^3 .

THEOREM 1. Let Σ be a compact immersed annular Bryant surface in \mathbb{H}^3 meting two parallel horospheres in constant contact angles. Let fbe the hyperbolic gauss map of Σ . If f' does not attain 0 and ∞ , then Σ is rotational.

Two horospheres in \mathbb{H}^3 are said to be *parallel* if they have the same ideal boundary point. We note that the gauss map of a minimal surface in a slab in \mathbb{R}^3 cannot attain 0 or ∞ [3]. But the hyperbolic gauss map of a catenoid cousin meeting two parallel horospheres can attain 0 or ∞ [10]. In the embedded surface case, one can use the Alexandrov reflection argument to prove that a compact embedded Bryant surface in \mathbb{H}^3 meeting two parallel horospheres in constant contact angles is rotational.

We use the Bianchi-Calò method which represents a Bryant surface very simply which is homeomorphic to a region in \mathbb{C} [6].

2. Bianchi-Calò method

We use the upper half space model (\mathbb{R}^3_+, ds_h^2) for \mathbb{H}^3 : $\mathbb{R}^3_+ = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_3 \leq 0\}$ and $ds_h^2 = (dx_1^2 + dx_2^2 + dx_3^2)/x_3^2$. In this model, horosphere is either a (euclidean) sphere tangent to the $\{x_3 = 0\}$ -plane or a horizontal plane $\{x_3 = constant\}$.

Let $\psi : \Sigma \to \mathbb{H}^3$ be an immersed oriented surface. Let ν be the unit normal vector field on Σ . The hyperbolic gauss map $f : \Sigma \to \partial_{\infty} \mathbb{H}^3$ relates to $p \in \Sigma$ the end point on the ideal boundary $\partial_{\infty} \mathbb{H}^3$ of the oriented normal geodesic starting from p in the direction of ν .

134

REMARK 1. Geometrically, the hyperbolic gauss map f can be interpreted in two ways as follows (the geodesic half sphere and horosphere are assumed to be located in the direction of ν . cf. Figure 1.):

(a) f(p) is the euclidean center on $\partial_{\infty}\mathbb{H}^3 = \mathbb{C}^2 \cup \{\infty\}$ of the geodesic plane tangent to M at p.

(b) f(p) is the point on $\partial_{\infty} \mathbb{H}^3$ of the horosphere tangent to M at p.

The following Lemma shows the special feature of the Bryant surfaces in \mathbb{H}^3 [2].

LEMMA 1. A surface $\psi : \Sigma \to \mathbb{H}^3$ has mean curvature one if and only if the hyperbolic gauss map $h : \Sigma \to \mathbb{C} \cup \{\infty\}$ is meromorphic.

Instead of the usual Bryant representation formula, we use the Bianchi-Calò method to represent a Bryant surface which is homeomorphic to a region in \mathbb{C} [6]. Let f = f(z) be a holomorphic map defined in a region $\Omega \subset \mathbb{C}$, and let

(1)
$$R_{f(z)} = \frac{1+|z|^2}{2} |f'(z)|.$$

Let $S_{f(z)} \subset \mathbb{R}^3_+$ be the sphere which is tangent to $\partial_{\infty}\mathbb{H}^3$ at f(z) and has euclidean radius $R_{f(z)}$. Note that $S_{f(z)}$ is a two-parameter family of spheres. Clearly, $\partial_{\infty}\mathbb{H}^3$ is one of the two envelopes of $S_{f(z)}$. The second envelope gives a Bryant surface whose gauss map is f [6].

Bianchi-Calò method: In the above situation, the parametrization

(2)
$$x_1 = Re(f) - \frac{|f'|^2 Re(f'z) + \frac{1+|z|^2}{2} Re\left((f')^2 \bar{f}''\right)}{|f'|^2 + Re(f' \bar{f}'' \bar{z}) + \frac{|f''|^2(1+|z|^2)}{4}}$$

(3)
$$x_2 = Im(f) - \frac{|f'|^2 Im(f'z) + \frac{1+|z|^2}{2} Im\left((f')^2 \bar{f}''\right)}{|f'|^2 + Re(f'\bar{f}''\bar{z}) + \frac{|f''|^2(1+|z|^2)}{4}}$$

(4)
$$x_3 = \frac{|f'|^3}{|f'|^2 + Re(f'\bar{f}''\bar{z}) + \frac{|f''|^2(1+|z|^2)}{4}}$$

in terms of f gives a Bryant surface Σ_f in \mathbb{H}^3 . (Here, we use ' to denote d/dz.) Moreover, f is the hyperbolic gauss map of Σ_f in terms of the local complex parameter z = x + iy on Ω .

FIGURE 1. Bianchi-Calò method

REMARK 2. For a given Bryant surface Σ homeomorphic to a region in \mathbb{C} with hyperbolic gauss map f, the radius R_f of (1) is just the euclidean radius of the horosphere tangent to $\partial_{\infty}\mathbb{H}^3$ and Σ . Therefore Σ_f derived from f by the Bianchi-Calò method coincides with Σ .

We briefly explain Σ_f . Details can be found in [6]. Let $f = f_1 + if_2$, and let

$$X(z) = (f_1(z), f_2(z), R_{f(z)})$$

be the surface of centers of $S_{f(z)}$. Since Σ_f is an envelope of $S_{f(z)}$, we have $T_p\Sigma_f = T_pS_{f(z)}$ at each $p \in \Sigma_f$ and for suitable z. Therefore Σ_f is given by

(5)
$$\xi(z) = X(z) - R_{f(z)}\nu,$$

where ν is the euclidean unit normal of Σ_f in the direction of $X - \xi$ (cf. Figure 2). Here we have (for simplicity, we let $R = R_f$) [6]

$$\nu = \frac{1}{|\nabla R|^2 + |f'|^2} \left(2\alpha_1, 2\alpha_2, |\nabla R|^2 - |f'|^2 \right),$$

where

$$\alpha_1 = R_y f_{2,x} - R_x f_{2,y}, \ \alpha_2 = R_x f_{1,y} - R_y f_{2,x}$$

and

(6)
$$|\nabla R|^2 + |f'|^2 = (|z|^2 + 1) \left(|f'|^2 + Re(f'\bar{f}''\bar{z}) + \frac{|f''|^2(1+|z|^2)}{4} \right).$$

Then it is easy to see that

(7)
$$x_3 = \xi_3 = R - R \nu_3 = \frac{2R|f'|^2}{|\nabla R|^2 + |f'|^2}.$$

136

3. Proof of the Main result

In the following, the two parallel horospheres under consideration are assumed to be two horizontal planes Π_1 and Π_2 in \mathbb{R}^3_+ . Let Σ be a compact immersed annular Bryant surface meeting Π_1 and Π_2 in constant contact angles. Let $\xi : A \to \mathbb{H}^3$ be the immersion of Σ , where $A = \{(x, y) \in \mathbb{R}^2 : R_1 \leq r = \sqrt{x^2 + y^2} \leq R_2\}$ is an annulus. Let $f : A \to \partial_\infty \mathbb{H}^3 = \mathbb{C}^2 \cup \{\infty\}$ be the hyperbolic gauss map of Σ . Hereafter we identify the Bryant surface Σ_f derived from f with Σ . Since the hyperbolic gauss map f is assumed to be bounded, f is holomorphic on A. Now we prove Theorem 1.

Proof of Theorem 1. The constant contact angle condition implies that the third component $\nu_3 = (|\nabla R|^2 - |f'|^2)/(|\nabla R|^2 + |f'|^2)$ of ν is constant on each component of ∂A . Therefore $|f'|^2/|\nabla R|^2$ is constant on each component of ∂A .

Since $\partial \Sigma_f$ lies on horizontal planes, $x_3 = 2R|f'|^2/(|\nabla R|^2 + |f'|^2)$ is also constant on each component of ∂A . From the constancy of $|f'|^2/|\nabla R|^2$ on ∂A , it follows that $2R = 2|f'|^2/(1+|z|^2)$ is constant on each component of ∂A . Since ∂A consists of two concentric circles centered at the origin, |f'| is also constant on each component of ∂A . Since |f'| is assumed not to attain 0 and ∞ , $\log |f'|$ is a bounded harmonic function on A. Since |f'| is constant on each component of ∂A , we have $\log |f'| = a \log |z| + b$ for some real constants a and b. Hence we have $f'(z) = e^b z^a = B z^a$. Since f is a single-valued holomorphic function on A, we have $f'(z) = B z^n$ for some integer n.

From (4), we see that

$$x_{3} = \frac{|Bz^{n}|^{3}}{|Bz^{n}|^{2} + B^{2}Re(z^{n} \cdot n \cdot \bar{z}^{n-1} \cdot \bar{z}) + \frac{|nBz^{n-1}|^{2}(1+|z|^{2})}{4}}{|B||z|^{n+2}} = \frac{|B||z|^{n+2}}{(n+1)|z|^{2} + \frac{n^{2}}{4}(1+|z|^{2})}$$

Hence x_3 is constant on each circle $C_r = \{z : |z| = r\}$, for $R_1 \leq r \leq R_2$. It follows that the x_3 -level curves of Σ_f are images of C_r .

From (1), it follows that R is also constant on each circle $C_r = \{z : |z| = r\}$. We may assume that $f(z) = \frac{B}{n+1}z^{n+1}$. Hence the image of C_r under f is a circle on $\partial_{\infty}\mathbb{H}^3$. Since Σ_f is one of the envelopes of $S_{f(z)}$,

S.-H. Park

we conclude that $\xi(C_r)$ is a circle on on a horizontal plane. It is clear that $\xi(C_r)$ are coaxial. Hence Σ_f is rotational. \Box

Finally, we raise the following question.

Let Σ be a compact immersed annular Bryant surface in \mathbb{H}^3 meeting two parallel horospheres in constant contact angles. Is Σ rotational, even if the derivative of the hyperbolic gauss map attain 0 or ∞ ?

References

- A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Amer. Math. Soc. Transl. 21 (1962), 412–416.
- [2] R. Bryant, Surfaces with constant mean curvature one in hyperbolic space, Astérisque 154–155: 321–347.
- [3] Y. Fang, Lectures on minimal surfaces in \mathbb{R}^3 , Center for Mathematics and Its applications, Australian National University, (1996).
- [4] H. Hopf, Differential Geometry in the large, Springer, Berlin, (1989).
- [5] H. B. Lawson, Complete Minimal Surfaces in S³, Ann. of Math. 2nd Ser. 92 (3) (1970), 335–374.
- [6] L. Lima and P. Roitman, Constant mean curvature one surfaces in hyperbolic space using Bianchi-Calò method, Annals of the Braz. Acad. of Sci. 74 (2002) (1), 19–24; arXiv:math/0110021.
- J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (1997) (2), 291–323.
- [8] J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Rat. Mech. Anal. 89 (1985), 1–19.
- J. Pyo, Minimal annuli with constant contact angle along the planar boundaries, Geom. Dedicata 146 (1) (2010), 159–164.
- [10] W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experiment. Math. Volume 7, Issue 2 (1998), 101–119.
- [11] J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. and Anal. 43 (1971), 304–318.
- [12] H. Wente, Tubular capillary surfaces in a convex body. Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 288–298, International Press, Cambridge, MA, (1995).

Sung-Ho Park Major in Mathematics Graduate School of Education Hankuk University of Foreign Studies Seoul 130-791, Korea *E-mail*: sunghopark@hufs.ac.kr

138