ON THE SYMMETRY OF ANNULAR BRYANT SURFACE WITH CONSTANT CONTACT ANGLE

Sung-Ho Park

Abstract

We show that a compact immersed annular Bryant surface in \mathbb{H}^{3} meeting two parallel horospheres in constant contact angles is rotational.

1. introduction

Catenoid is the only nonplanar minimal surface of rotation in \mathbb{R}^{3}. Therefore a catenoid meets each plane perpendicular to the axis of rotation in constant contact angle. Conversely, if a compact embedded minimal or constant mean curvature (cmc) surface in \mathbb{R}^{3} meets two parallel planes in constant contact angles, then the surface is part of a catenoid or part of a cmc surface of rotation, i.e., a Delaunay surface. This can be proved by using the Alexandrov's moving plane argument [4], [11] to planes perpendicular to the parallel planes. Recently, Pyo showed that a compact immersed minimal annulus meeting two parallel planes in constant contact angles is also part of a catenoid [9]. In the case of cmc surfaces, the result fails to hold: Wente constructed examples of immersed constant mean curvature annuli in a slab or in a ball meeting the boundary planes or the boundary sphere perpendicularly [12].

[^0]The hyperbolic gauss map of a Bryant surface in \mathbb{H}^{3} is meromorphic as the gauss map of a minimal surface in \mathbb{R}^{3} is meromorphic [2]. Morevoer, the cousin correspondence [5] shows a close relation between minimal surfaces in \mathbb{R}^{3} and Bryant surfaces in \mathbb{H}^{3} : for each simply connected minimal surface in \mathbb{R}^{3}, there exists a differentiable, 2π-periodic family of Bryant surfaces in \mathbb{H}^{3}. The cousin of a plane in \mathbb{R}^{3} is the associate surfaces of a horosphere in \mathbb{H}^{3}. The cousin of the catenoid is called the catenoid cousin. In this paper, we generalize Pyo's result to Bryant surfaces in \mathbb{H}^{3}.

Theorem 1. Let Σ be a compact immersed annular Bryant surface in \mathbb{H}^{3} meting two parallel horospheres in constant contact angles. Let f be the hyperbolic gauss map of Σ. If f^{\prime} does not attain 0 and ∞, then Σ is rotational.

Two horospheres in \mathbb{H}^{3} are said to be parallel if they have the same ideal boundary point. We note that the gauss map of a minimal surface in a slab in \mathbb{R}^{3} cannot attain 0 or $\infty[3]$. But the hyperbolic gauss map of a catenoid cousin meeting two parallel horospheres can attain 0 or ∞ [10]. In the embedded surface case, one can use the Alexandrov reflection argument to prove that a compact embedded Bryant surface in \mathbb{H}^{3} meeting two parallel horospheres in constant contact angles is rotational.

We use the Bianchi-Calò method which represents a Bryant surface very simply which is homeomorphic to a region in $\mathbb{C}[6]$.

2. Bianchi-Calò method

We use the upper half space model $\left(\mathbb{R}_{+}^{3}, d s_{h}^{2}\right)$ for $\mathbb{H}^{3}: \mathbb{R}_{+}^{3}=\left\{\left(x_{1}, x_{2}, x_{3}\right)\right.$ $\left.\in \mathbb{R}^{3}: x_{3} \leq 0\right\}$ and $d s_{h}^{2}=\left(d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}\right) / x_{3}^{2}$. In this model, horosphere is either a (euclidean) sphere tangent to the $\left\{x_{3}=0\right\}$-plane or a horizontal plane $\left\{x_{3}=\right.$ constant $\}$.

Let $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ be an immersed oriented surface. Let ν be the unit normal vector field on Σ. The hyperbolic gauss map $f: \Sigma \rightarrow \partial_{\infty} \mathbb{H}^{3}$ relates to $p \in \Sigma$ the end point on the ideal boundary $\partial_{\infty} \mathbb{H}^{3}$ of the oriented normal geodesic starting from p in the direction of ν.

Remark 1. Geometrically, the hyperbolic gauss map f can be interpreted in two ways as follows (the geodesic half sphere and horosphere are assumed to be located in the direction of ν. cf. Figure 1.):
(a) $f(p)$ is the euclidean center on $\partial_{\infty} \mathbb{H}^{3}=\mathbb{C}^{2} \cup\{\infty\}$ of the geodesic plane tangent to M at p.
(b) $f(p)$ is the point on $\partial_{\infty} \mathbb{H}^{3}$ of the horosphere tangent to M at p.

The following Lemma shows the special feature of the Bryant surfaces in $\mathbb{H}^{3}[2]$.

Lemma 1. A surface $\psi: \Sigma \rightarrow \mathbb{H}^{3}$ has mean curvature one if and only if the hyperbolic gauss map $h: \Sigma \rightarrow \mathbb{C} \cup\{\infty\}$ is meromorphic.

Instead of the usual Bryant representation formula, we use the BianchiCalò method to represent a Bryant surface which is homeomorphic to a region in $\mathbb{C}[6]$. Let $f=f(z)$ be a holomorphic map defined in a region $\Omega \subset \mathbb{C}$, and let

$$
\begin{equation*}
R_{f(z)}=\frac{1+|z|^{2}}{2}\left|f^{\prime}(z)\right| . \tag{1}
\end{equation*}
$$

Let $S_{f(z)} \subset \mathbb{R}_{+}^{3}$ be the sphere which is tangent to $\partial_{\infty} \mathbb{H}^{3}$ at $f(z)$ and has euclidean radius $R_{f(z)}$. Note that $S_{f(z)}$ is a two-parameter family of spheres. Clearly, $\partial_{\infty} \mathbb{H}^{3}$ is one of the two envelopes of $S_{f(z)}$. The second envelope gives a Bryant surface whose gauss map is f [6].

Bianchi-Calò method: In the above situation, the parametrization

$$
\begin{align*}
& x_{1}=\operatorname{Re}(f)-\frac{\left|f^{\prime}\right|^{2} \operatorname{Re}\left(f^{\prime} z\right)+\frac{1+|z|^{2}}{2} \operatorname{Re}\left(\left(f^{\prime}\right)^{2} \bar{f}^{\prime \prime}\right)}{\left|f^{\prime}\right|^{2}+\operatorname{Re}\left(f^{\prime} \bar{f}^{\prime \prime} \bar{z}\right)+\frac{\left.\left|f^{\prime \prime \prime}\right|\right|^{2}\left(1+|z|^{2}\right)}{4}} \tag{2}\\
& x_{2}=\operatorname{Im}(f)-\frac{\left|f^{\prime}\right|^{2} \operatorname{Im}\left(f^{\prime} z\right)+\frac{1+|z|^{2}}{2} \operatorname{Im}\left(\left(f^{\prime}\right)^{2} \bar{f}^{\prime \prime}\right)}{\left|f^{\prime}\right|^{2}+\operatorname{Re}\left(f^{\prime} \overline{f^{\prime \prime}} \bar{z}\right)+\frac{\left|f^{\prime \prime}\right|^{2}\left(1+|z|^{2}\right)}{4}} \tag{3}\\
& x_{3}=\frac{\left|f^{\prime}\right|^{3}}{\left|f^{\prime}\right|^{2}+\operatorname{Re}\left(f^{\prime} \bar{f}^{\prime \prime} \bar{z}\right)+\frac{\left|f^{\prime \prime}\right|^{2}\left(1+|z|^{2}\right)}{4}} \tag{4}
\end{align*}
$$

in terms of f gives a Bryant surface Σ_{f} in \mathbb{H}^{3}. (Here, we use ' to denote $d / d z$.) Moreover, f is the hyperbolic gauss map of Σ_{f} in terms of the local complex parameter $z=x+i y$ on Ω.

Figure 1. Bianchi-Calò method
Remark 2. For a given Bryant surface Σ homeomorphic to a region in \mathbb{C} with hyperbolic gauss map f, the radius R_{f} of (1) is just the euclidean radius of the horosphere tangent to $\partial_{\infty} \mathbb{H}^{3}$ and Σ. Therefore Σ_{f} derived from f by the Bianchi-Calò method coincides with Σ.

We briefly explain Σ_{f}. Details can be found in [6]. Let $f=f_{1}+i f_{2}$, and let

$$
X(z)=\left(f_{1}(z), f_{2}(z), R_{f(z)}\right)
$$

be the surface of centers of $S_{f(z)}$. Since Σ_{f} is an envelope of $S_{f(z)}$, we have $T_{p} \Sigma_{f}=T_{p} S_{f(z)}$ at each $p \in \Sigma_{f}$ and for suitable z. Therefore Σ_{f} is given by

$$
\begin{equation*}
\xi(z)=X(z)-R_{f(z)} \nu \tag{5}
\end{equation*}
$$

where ν is the euclidean unit normal of Σ_{f} in the direction of $X-\xi$ (cf. Figure 2). Here we have (for simplicity, we let $R=R_{f}$) [6]

$$
\nu=\frac{1}{|\nabla R|^{2}+\left|f^{\prime}\right|^{2}}\left(2 \alpha_{1}, 2 \alpha_{2},|\nabla R|^{2}-\left|f^{\prime}\right|^{2}\right),
$$

where

$$
\alpha_{1}=R_{y} f_{2, x}-R_{x} f_{2, y}, \alpha_{2}=R_{x} f_{1, y}-R_{y} f_{2, x}
$$

and
(6) $|\nabla R|^{2}+\left|f^{\prime}\right|^{2}=\left(|z|^{2}+1\right)\left(\left|f^{\prime}\right|^{2}+\operatorname{Re}\left(f^{\prime} f^{\prime \prime} \bar{z}\right)+\frac{\left|f^{\prime \prime}\right|^{2}\left(1+|z|^{2}\right)}{4}\right)$.

Then it is easy to see that

$$
\begin{equation*}
x_{3}=\xi_{3}=R-R \nu_{3}=\frac{2 R\left|f^{\prime}\right|^{2}}{|\nabla R|^{2}+\left|f^{\prime}\right|^{2}} . \tag{7}
\end{equation*}
$$

3. Proof of the Main result

In the following, the two parallel horospheres under consideration are assumed to be two horizontal planes Π_{1} and Π_{2} in \mathbb{R}_{+}^{3}. Let Σ be a compact immersed annular Bryant surface meeting Π_{1} and Π_{2} in constant contact angles. Let $\xi: A \rightarrow \mathbb{H}^{3}$ be the immersion of Σ, where $A=\left\{(x, y) \in \mathbb{R}^{2}: R_{1} \leq r=\sqrt{x^{2}+y^{2}} \leq R_{2}\right\}$ is an annulus. Let $f: A \rightarrow \partial_{\infty} \mathbb{H}^{3}=\mathbb{C}^{2} \cup\{\infty\}$ be the hyperbolic gauss map of Σ. Hereafter we identify the Bryant surface Σ_{f} derived from f with Σ. Since the hyperbolic gauss map f is assumed to be bounded, f is holomorphic on A. Now we prove Theorem 1.

Proof of Theorem 1. The constant contact angle condition implies that the third component $\nu_{3}=\left(|\nabla R|^{2}-\left|f^{\prime}\right|^{2}\right) /\left(|\nabla R|^{2}+\left|f^{\prime}\right|^{2}\right)$ of ν is constant on each component of ∂A. Therefore $\left|f^{\prime}\right|^{2} /|\nabla R|^{2}$ is constant on each component of ∂A.

Since $\partial \Sigma_{f}$ lies on horizontal planes, $x_{3}=2 R\left|f^{\prime}\right|^{2} /\left(|\nabla R|^{2}+\left|f^{\prime}\right|^{2}\right)$ is also constant on each component of ∂A. From the constancy of $\left|f^{\prime}\right|^{2} /|\nabla R|^{2}$ on ∂A, it follows that $2 R=2\left|f^{\prime}\right|^{2} /\left(1+|z|^{2}\right)$ is constant on each component of ∂A. Since ∂A consists of two concentric circles centered at the origin, $\left|f^{\prime}\right|$ is also constant on each component of ∂A. Since $\left|f^{\prime}\right|$ is assumed not to attain 0 and $\infty, \log \left|f^{\prime}\right|$ is a bounded harmonic function on A. Since $\left|f^{\prime}\right|$ is constant on each component of ∂A, we have $\log \left|f^{\prime}\right|=a \log |z|+b$ for some real constants a and b. Hence we have $f^{\prime}(z)=e^{b} z^{a}=B z^{a}$. Since f is a single-valued holomorphic function on A, we have $f^{\prime}(z)=B z^{n}$ for some integer n.

From (4), we see that

$$
\begin{aligned}
x_{3} & =\frac{\left|B z^{n}\right|^{3}}{\left|B z^{n}\right|^{2}+B^{2} \operatorname{Re}\left(z^{n} \cdot n \cdot \bar{z}^{n-1} \cdot \bar{z}\right)+\frac{\left|n B z^{n-1}\right|^{2}\left(1+|z|^{2}\right)}{4}} . \\
& =\frac{|B||z|^{n+2}}{(n+1)|z|^{2}+\frac{n^{2}}{4}\left(1+|z|^{2}\right)}
\end{aligned}
$$

Hence x_{3} is constant on each circle $C_{r}=\{z:|z|=r\}$, for $R_{1} \leq r \leq R_{2}$. It follows that the x_{3}-level curves of Σ_{f} are images of C_{r}.

From (1), it follows that R is also constant on each circle $C_{r}=\{z$: $|z|=r\}$. We may assume that $f(z)=\frac{B}{n+1} z^{n+1}$. Hence the image of C_{r} under f is a circle on $\partial_{\infty} \mathbb{H}^{3}$. Since Σ_{f} is one of the envelopes of $S_{f(z)}$,
we conclude that $\xi\left(C_{r}\right)$ is a circle on on a horizontal plane. It is clear that $\xi\left(C_{r}\right)$ are coaxial. Hence Σ_{f} is rotational.

Finally, we raise the following question.
Let Σ be a compact immersed annular Bryant surface in \mathbb{H}^{3} meeting two parallel horospheres in constant contact angles. Is Σ rotational, even if the derivative of the hyperbolic gauss map attain 0 or ∞ ?

References

[1] A. D. Alexandrov, Uniqueness theorems for surfaces in the large V, Amer. Math. Soc. Transl. 21 (1962), 412-416.
[2] R. Bryant, Surfaces with constant mean curvature one in hyperbolic space, Astérisque 154-155: 321-347.
[3] Y. Fang, Lectures on minimal surfaces in \mathbb{R}^{3}, Center for Mathematics and Its applications, Australian National University, (1996).
[4] H. Hopf, Differential Geometry in the large, Springer, Berlin, (1989).
[5] H. B. Lawson, Complete Minimal Surfaces in \mathbb{S}^{3}, Ann. of Math. 2nd Ser. 92 (3) (1970), 335-374.
[6] L. Lima and P. Roitman, Constant mean curvature one surfaces in hyperbolic space using Bianchi-Calò method, Annals of the Braz. Acad. of Sci. 74 (2002) (1), 19-24; arXiv:math/0110021.
[7] J. McCuan, Symmetry via spherical reflection and spanning drops in a wedge, Pacific J. Math. 180 (1997) (2), 291-323.
[8] J. C. C. Nitsche, Stationary partitioning of convex bodies, Arch. Rat. Mech. Anal. 89 (1985), 1-19.
[9] J. Pyo, Minimal annuli with constant contact angle along the planar boundaries, Geom. Dedicata 146 (1) (2010), 159-164.
[10] W. Rossman and K. Sato, Constant mean curvature surfaces with two ends in hyperbolic space, Experiment. Math. Volume 7, Issue 2 (1998), 101-119.
[11] J. Serrin, A symmetry problem in potential theory, Arch. Rat. Mech. and Anal. 43 (1971), 304-318.
[12] H. Wente, Tubular capillary surfaces in a convex body. Advances in geometric analysis and continuum mechanics (Stanford, CA, 1993), 288-298, International Press, Cambridge, MA, (1995).

Sung-Ho Park
Major in Mathematics
Graduate School of Education
Hankuk University of Foreign Studies
Seoul 130-791, Korea
E-mail: sunghopark@hufs.ac.kr

[^0]: Received November 12, 2013. Revised March 17, 2014. Accepted March 17, 2014. 2010 Mathematics Subject Classification: 53A10, 53C24.
 Key words and phrases: Bryant Surface, Hyperbolic space, Capillarity.
 This work was supported by Hankuk University of Foreign Studies Research Fund.
 (c) The Kangwon-Kyungki Mathematical Society, 2014.

 This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.

