GENERALIZED (θ, ϕ)-DERIVATIONS ON BANACH ALGEBRAS

Choonkil Park ${ }^{\dagger}$ and Dong Yun Shin ${ }^{\ddagger}$

Abstract

We introduce the concept of generalized (θ, ϕ)-derivations on Banach algebras, and prove the Cauchy-Rassias stability of generalized (θ, ϕ)-derivations on Banach algebras.

1. Introduction

Let X and Y be Banach spaces with norms $\|\cdot\|$ and $\|\cdot\|$, respectively. Consider $f: X \rightarrow Y$ to be a mapping such that $f(t x)$ is continuous in $t \in \mathbb{R}$ for each fixed $x \in X$. Rassias [12] introduced the following inequality, that we call Cauchy-Rassias inequality: Assume that there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\|f(x+y)-f(x)-f(y)\| \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
$$

Received February 19, 2014. Revised March 26, 2014. Accepted March 26, 2014. 2010 Mathematics Subject Classification: 47C05, 39B52, 47A62.
Key words and phrases: Cauchy-Rassias stability, generalized (θ, ϕ)-derivation on Banach algebra.
${ }^{\ddagger}$ Corresponding Author.
${ }^{\dagger}$ This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2012R1A1A2004299).
\ddagger This work was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education, Science and Technology (NRF-2010-0021792).
(c) The Kangwon-Kyungki Mathematical Society, 2014.

This is an Open Access article distributed under the terms of the Creative commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by -nc/3.0/) which permits unrestricted non-commercial use, distribution and reproduction in any medium, provided the original work is properly cited.
for all $x, y \in X$. Rassias [12] showed that there exists a unique \mathbb{R}-linear mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-T(x)\| \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
$$

for all $x \in X$. Beginning around the year 1980 the topic of approximate homomorphisms, or the stability of the equation of homomorphism, was studied by a number of mathematicians. Găvruta [5] generalized the Rassias' result in the following form: Let G be an abelian group and X a Banach space. Denote by $\varphi: G \times G \rightarrow[0, \infty)$ a function such that

$$
\widetilde{\varphi}(x, y)=\sum_{k=0}^{\infty} 2^{-k} \varphi\left(2^{k} x, 2^{k} y\right)<\infty
$$

for all $x, y \in G$. Suppose that $f: G \rightarrow X$ is a mapping satisfying

$$
\|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y)
$$

for all $x, y \in G$. Then there exists a unique additive mapping $T: G \rightarrow X$ such that

$$
\|f(x)-T(x)\| \leq \frac{1}{2} \widetilde{\varphi}(x, x)
$$

for all $x \in G$.
Jun and Lee [7] proved the following: Denote by $\varphi: X \backslash\{0\} \times X \backslash$ $\{0\} \rightarrow[0, \infty)$ a function such that

$$
\widetilde{\varphi}(x, y)=\sum_{j=0}^{\infty} \frac{1}{3^{j}} \varphi\left(3^{j} x, 3^{j} y\right)<\infty
$$

for all $x, y \in X \backslash\{0\}$. Suppose that $f: X \rightarrow Y$ is a mapping satisfying

$$
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| \leq \varphi(x, y)
$$

for all $x, y \in X \backslash\{0\}$. Then there exists a unique additive mapping $T: X \rightarrow Y$ such that

$$
\|f(x)-f(0)-T(x)\| \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x))
$$

for all $x \in X \backslash\{0\}$. The stability problem of functional equations has been investigated in several papers (see [4,13,14] and references therein).

Recently, the stability of derivations on other topological structures has been recently studied by a number of mathematicians; see [3,10,11].

In this paper, we introduce the concept of generalized (θ, ϕ)-derivations on Banach algebras, and prove the Cauchy-Rassias stability of generalized (θ, ϕ)-derivations on Banach algebras.

Throughout this paper, we denote by R the set of real numbers or complex numbers. Let θ, ϕ be endomorphisms of an algebra B over R. An additive mapping $D: B \rightarrow B$ is called a (θ, ϕ)-derivation on B if $D(x y)=D(x) \theta(y)+\phi(x) D(y)$ holds for all $x, y \in B$. An additive mapping $U: B \rightarrow B$ is called a generalized (θ, ϕ)-derivation on B if there exists a (θ, ϕ)-derivation $D: B \rightarrow B$ such that $U(x y)=U(x) \theta(y)+$ $\phi(x) D(y)$ holds for all $x, y \in B$ (see $[1,2,6])$.

2. Generalized (θ, ϕ)-derivations on Banach algebras

Throughout this section, let B be a Banach algebra over R with norm $\|\cdot\|$.

Definition 2.1. Let $\theta, \phi: B \rightarrow B$ be additive mappings. An additive mapping $D: B \rightarrow B$ is called a (θ, ϕ)-derivation on B if $D(x y)=$ $D(x) \theta(y)+\phi(x) D(y)$ holds for all $x, y \in B$.

An additive mapping $U: B \rightarrow B$ is called a generalized (θ, ϕ) derivation on B if there exists a (θ, ϕ)-derivation $D: B \rightarrow B$ such that $U(x y)=U(x) \theta(y)+\phi(x) D(y)$ holds for all $x, y \in B$.

Theorem 2.2. Let $f, g, h, u: B \rightarrow B$ be mappings with $f(0)=$ $g(0)=h(0)=u(0)=0$ for which there exists a function $\varphi: B \times B \rightarrow$ $[0, \infty)$ such that

$$
\begin{align*}
& \widetilde{\varphi}(x, y):=\sum_{j=0}^{\infty} \frac{1}{2^{j}} \varphi\left(2^{j} x, 2^{j} y\right)<\infty, \tag{1}\\
& \|f(x+y)-f(x)-f(y)\| \leq \varphi(x, y), \tag{2}\\
& \|g(x+y)-g(x)-g(y)\| \leq \varphi(x, y), \tag{3}\\
& \|h(x+y)-h(x)-h(y)\| \leq \varphi(x, y), \tag{4}\\
& \|u(x+y)-u(x)-u(y)\| \leq \varphi(x, y), \tag{5}\\
& \text { (6) }\|f(x y)-f(x) g(y)-h(x) f(y)\| \leq \varphi(x, y) \text {, } \\
& \|u(x y)-u(x) g(y)-h(x) f(y)\| \leq \varphi(x, y) \tag{7}
\end{align*}
$$

for all $x, y \in B$. Then there exist unique additive mappings D, θ, ϕ, U : $B \rightarrow B$ such that

$$
\begin{align*}
\|f(x)-D(x)\| & \leq \frac{1}{2} \widetilde{\varphi}(x, x) \tag{8}\\
\|g(x)-\theta(x)\| & \leq \frac{1}{2} \widetilde{\varphi}(x, x) \tag{9}\\
\|h(x)-\phi(x)\| & \leq \frac{1}{2} \widetilde{\varphi}(x, x) \tag{10}\\
\|u(x)-U(x)\| & \leq \frac{1}{2} \widetilde{\varphi}(x, x) \tag{11}
\end{align*}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a (θ, ϕ)-derivation on B, and $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Proof. By the Găvruta's theorem [5], it follows from (1)-(5) that there exist unique additive mappings $D, \theta, \phi, U: B \rightarrow B$ satisfying (8)-(11). The additive mappings $D, \theta, \phi, U: B \rightarrow B$ are given by

$$
\begin{align*}
D(x) & =\lim _{l \rightarrow \infty} \frac{1}{2^{l}} f\left(2^{l} x\right), \tag{12}\\
\theta(x) & =\lim _{l \rightarrow \infty} \frac{1}{2^{l}} g\left(2^{l} x\right), \tag{13}\\
\phi(x) & =\lim _{l \rightarrow \infty} \frac{1}{2^{l}} h\left(2^{l} x\right), \tag{14}\\
U(x) & =\lim _{l \rightarrow \infty} \frac{1}{2^{l}} u\left(2^{l} x\right) \tag{15}
\end{align*}
$$

for all $x \in B$.
It follows from (6) that
$\frac{1}{2^{2 l}}\left\|f\left(2^{2 l} x y\right)-f\left(2^{l} x\right) g\left(2^{l} y\right)-h\left(2^{l} x\right) f\left(2^{l} y\right)\right\| \leq \frac{1}{2^{2 l}} \varphi\left(2^{l} x, 2^{l} y\right) \leq \frac{1}{2^{l}} \varphi\left(2^{l} x, 2^{l} y\right)$,
which tends to zero as $l \rightarrow \infty$ for all $x, y \in B$ by (1). By (12)-(14),

$$
D(x y)=D(x) \theta(y)+\phi(x) D(y)
$$

for all $x, y \in B$. So the additive mapping $D: B \rightarrow B$ is a $(\theta, \phi)-$ derivation on B.

It follows from (7) that

$$
\frac{1}{2^{2 l}}\left\|u\left(2^{2 l} x y\right)-u\left(2^{l} x\right) g\left(2^{l} y\right)-h\left(2^{l} x\right) f\left(2^{l} y\right)\right\| \leq \frac{1}{2^{2 l}} \varphi\left(2^{l} x, 2^{l} y\right) \leq \frac{1}{2^{l}} \varphi\left(2^{l} x, 2^{l} y\right),
$$

which tends to zero as $l \rightarrow \infty$ for all $x, y \in B$ by (1). Thus

$$
U(x y)=U(x) \theta(y)+\phi(x) D(y)
$$

for all $x, y \in B$. So the additive mapping $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Corollary 2.3. Let $f, g, h, u: B \rightarrow B$ be mappings with $f(0)=$ $g(0)=h(0)=u(0)=0$ for which there exist constants $\epsilon \geq 0$ and $p \in[0,1)$ such that

$$
\begin{aligned}
\|f(x+y)-f(x)-f(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|g(x+y)-g(x)-g(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|h(x+y)-h(x)-h(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|u(x+y)-u(x)-u(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|f(x y)-f(x) g(y)-h(x) f(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|u(x y)-u(x) g(y)-h(x) f(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
\end{aligned}
$$

for all $x, y \in B$. Then there exist unique additive mappings D, θ, ϕ, U : $B \rightarrow B$ such that

$$
\begin{aligned}
\|f(x)-D(x)\| & \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \\
\|g(x)-\theta(x)\| & \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \\
\|h(x)-\phi(x)\| & \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p} \\
\|u(x)-U(x)\| & \leq \frac{2 \epsilon}{2-2^{p}}\|x\|^{p}
\end{aligned}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a (θ, ϕ)-derivation on B, and $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Proof. Defining $\varphi(x, y)=\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$ to be Th.M. Rassias upper bound in the Cauchy-Rassias inequality, and applying Theorem 2.2, we get the desired result.

Corollary 2.4. Let $\theta, \phi: B \rightarrow B$ be additive mappings. Let f, u : $B \rightarrow B$ be mappings with $f(0)=u(0)=0$ for which there exists a function $\varphi: B \times B \rightarrow[0, \infty)$ satisfying (1), (2), and (5) such that

$$
\begin{align*}
& \|f(x y)-f(x) \theta(y)-\phi(x) f(y)\| \leq \varphi(x, y) \tag{16}\\
& \|u(x y)-u(x) \theta(y)-\phi(x) f(y)\| \leq \varphi(x, y) \tag{17}
\end{align*}
$$

for all $x, y \in B$. Then there exists a unique (θ, ϕ)-derivation $D: B \rightarrow B$ satisfying (8), and there exists a unique generalized (θ, ϕ)-derivation $U: B \rightarrow B$ satisfying (11).

Proof. Letting $\theta=g$ and $\phi=h$ in the statement of Theorem 2.2, we get the result.

Theorem 2.5. Let $f, g, h, u: B \rightarrow B$ be mappings with $f(0)=$ $g(0)=h(0)=u(0)=0$ for which there exists a function $\varphi: B \times B \rightarrow$ $[0, \infty)$ satisfying (6) and (7) such that

$$
\begin{align*}
\widetilde{\varphi}(x, y): & =\sum_{j=0}^{\infty} \frac{1}{3^{j}} \varphi\left(3^{j} x, 3^{j} y\right)<\infty \tag{18}\\
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| & \leq \varphi(x, y) \\
\left\|2 g\left(\frac{x+y}{2}\right)-g(x)-g(y)\right\| & \leq \varphi(x, y) \\
\left\|2 h\left(\frac{x+y}{2}\right)-h(x)-h(y)\right\| & \leq \varphi(x, y) \tag{21}\\
\left\|2 u\left(\frac{x+y}{2}\right)-u(x)-u(y)\right\| & \leq \varphi(x, y) \tag{22}
\end{align*}
$$

for all $x, y \in B$. Then there exist unique additive mappings D, θ, ϕ, U : $B \rightarrow B$ such that

$$
\begin{align*}
\|f(x)-D(x)\| & \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x)) \tag{23}\\
\|g(x)-\theta(x)\| & \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x)) \tag{24}\\
\|h(x)-\phi(x)\| & \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x)) \tag{25}\\
\|u(x)-U(x)\| & \leq \frac{1}{3}(\widetilde{\varphi}(x,-x)+\widetilde{\varphi}(-x, 3 x)) \tag{26}
\end{align*}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a (θ, ϕ)-derivation on B, and $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Proof. By the Jun and Lee's theorem [7, Theorem 1], it follows from (18)-(22) that there exist unique additive mappings $D, \theta, \phi, U: B \rightarrow B$ satisfying (23)-(26). The additive mappings $D, \theta, \phi, U: B \rightarrow B$ are
given by

$$
\begin{align*}
D(x) & =\lim _{l \rightarrow \infty} \frac{1}{3^{l}} f\left(3^{l} x\right), \tag{27}\\
\theta(x) & =\lim _{l \rightarrow \infty} \frac{1}{3^{l}} g\left(3^{l} x\right), \tag{28}\\
\phi(x) & =\lim _{l \rightarrow \infty} \frac{1}{3^{l}} h\left(3^{l} x\right), \tag{29}\\
U(x) & =\lim _{l \rightarrow \infty} \frac{1}{3^{l}} u\left(3^{l} x\right), \tag{30}
\end{align*}
$$

for all $x \in B$.
It follows from (6) that
$\frac{1}{3^{2 l}}\left\|f\left(3^{2 l} x y\right)-f\left(3^{l} x\right) g\left(3^{l} y\right)-h\left(3^{l} x\right) f\left(3^{l} y\right)\right\| \leq \frac{1}{3^{2 l}} \varphi\left(3^{l} x, 3^{l} y\right) \leq \frac{1}{3^{l}} \varphi\left(3^{l} x, 3^{l} y\right)$,
which tends to zero as $l \rightarrow \infty$ for all $x, y \in B$ by (18). By (27)-(30),

$$
D(x y)=D(x) \theta(y)+\phi(x) D(y)
$$

for all $x, y \in B$. So the additive mapping $D: B \rightarrow B$ is a (θ, ϕ) derivation on B.

It follows from (7) that
$\frac{1}{3^{2 l}}\left\|u\left(3^{2 l} x y\right)-u\left(3^{l} x\right) g\left(3^{l} y\right)-h\left(3^{l} x\right) f\left(3^{l} y\right)\right\| \leq \frac{1}{3^{2 l}} \varphi\left(3^{l} x, 3^{l} y\right) \leq \frac{1}{3^{l}} \varphi\left(3^{l} x, 3^{l} y\right)$,
which tends to zero as $l \rightarrow \infty$ for all $x, y \in B$ by (18). Thus

$$
U(x y)=U(x) \theta(y)+\phi(x) D(y)
$$

for all $x, y \in B$. So the additive mapping $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Corollary 2.6. Let $f, g, h, u: B \rightarrow B$ be mappings with $f(0)=$ $g(0)=h(0)=u(0)=0$ for which there exist constants $\epsilon \geq 0$ and
$p \in[0,1)$ such that

$$
\begin{aligned}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\left\|2 g\left(\frac{x+y}{2}\right)-g(x)-g(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\left\|2 h\left(\frac{x+y}{2}\right)-h(x)-h(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \\
\left\|2 u\left(\frac{x+y}{2}\right)-u(x)-u(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right) \\
\|f(x y)-f(x) g(y)-h(x) f(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|u(x y)-u(x) g(y)-h(x) f(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
\end{aligned}
$$

for all $x, y \in B$. Then there exist unique additive mappings D, θ, ϕ, U : $B \rightarrow B$ such that

$$
\begin{aligned}
\|f(x)-D(x)\| & \leq \frac{3+3^{p}}{3-3^{p}} \epsilon\|x\|^{p}, \\
\|g(x)-\theta(x)\| & \leq \frac{3+3^{p}}{3-3^{p}} \epsilon\|x\|^{p}, \\
\|h(x)-\phi(x)\| & \leq \frac{3+3^{p}}{3-3^{p}} \epsilon\|x\|^{p}, \\
\|u(x)-U(x)\| & \leq \frac{3+3^{p}}{3-3^{p}} \epsilon\|x\|^{p}
\end{aligned}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a (θ, ϕ)-derivation on B, and $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Proof. Defining $\varphi(x, y)=\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$, and applying Theorem 2.5, we get the desired result.

Corollary 2.7. Let $\theta, \phi: B \rightarrow B$ be additive mappings. Let f, u : $B \rightarrow B$ be mappings with $f(0)=u(0)=0$ for which there exists a function $\varphi: B \times B \rightarrow[0, \infty)$ satisfying (18), (19), (22), (16) and (17). Then there exists a unique (θ, ϕ)-derivation $D: B \rightarrow B$ satisfying (23), and there exists a unique generalized (θ, ϕ)-derivation $U: B \rightarrow B$ satisfying (26).

Proof. Letting $\theta=g$ and $\phi=h$ in the statement of Theorem 2.5, we get the result.

Theorem 2.8. Let $f, g, h, u: B \rightarrow B$ be mappings with $f(0)=$ $g(0)=h(0)=u(0)=0$ for which there exists a function $\varphi: B \times B \rightarrow$
$[0, \infty)$ satisfying (19)-(22), (6) and (7) such that

$$
\begin{equation*}
\sum_{j=0}^{\infty} 3^{2 j} \varphi\left(\frac{x}{3^{j}}, \frac{y}{3^{j}}\right)<\infty \tag{31}
\end{equation*}
$$

for all $x, y \in B$. Then there exist unique additive mappings D, θ, ϕ, U :
$B \rightarrow B$ such that

$$
\begin{align*}
\|f(x)-D(x)\| & \leq \widetilde{\varphi}\left(\frac{x}{3},-\frac{x}{3}\right)+\widetilde{\varphi}\left(-\frac{x}{3}, x\right) \tag{32}\\
\|g(x)-\theta(x)\| & \leq \widetilde{\varphi}\left(\frac{x}{3},-\frac{x}{3}\right)+\widetilde{\varphi}\left(-\frac{x}{3}, x\right) \tag{33}\\
\|h(x)-\phi(x)\| & \leq \widetilde{\varphi}\left(\frac{x}{3},-\frac{x}{3}\right)+\widetilde{\varphi}\left(-\frac{x}{3}, x\right) \tag{34}\\
\|u(x)-U(x)\| & \leq \widetilde{\varphi}\left(\frac{x}{3},-\frac{x}{3}\right)+\widetilde{\varphi}\left(-\frac{x}{3}, x\right) \tag{35}
\end{align*}
$$

for all $x \in B$, where

$$
\widetilde{\varphi}(x, y):=\sum_{j=0}^{\infty} 3^{j} \varphi\left(\frac{x}{3^{j}}, \frac{y}{3^{j}}\right)
$$

for all $x, y \in B$. Moreover, $D: B \rightarrow B$ is a (θ, ϕ)-derivation on B, and $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Proof. By the Jun and Lee's theorem [7, Theorem 7], it follows from (31) and (19)-(22) that there exist unique additive mappings D, θ, ϕ, U : $B \rightarrow B$ satisfying (32)-(35). The additive mappings $D, \theta, \phi, U: B \rightarrow B$ are given by

$$
\begin{align*}
D(x) & =\lim _{l \rightarrow \infty} 3^{l} f\left(\frac{x}{3^{l}}\right), \tag{36}\\
\theta(x) & =\lim _{l \rightarrow \infty} 3^{l} g\left(\frac{x}{3^{l}}\right), \tag{37}\\
\phi(x) & =\lim _{l \rightarrow \infty} 3^{l} h\left(\frac{x}{3^{l}}\right), \tag{38}\\
U(x) & =\lim _{l \rightarrow \infty} 3^{l} u\left(\frac{x}{3^{l}}\right), \tag{39}
\end{align*}
$$

for all $x \in B$.
It follows from (6) that

$$
3^{2 l}\left\|f\left(\frac{x y}{3^{2 l}}\right)-f\left(\frac{x}{3^{l}}\right) g\left(\frac{y}{3^{l}}\right)-h\left(\frac{x}{3^{l}}\right) f\left(\frac{y}{3^{l}}\right)\right\| \leq 3^{2 l} \varphi\left(\frac{x}{3^{l}}, \frac{y}{3^{l}}\right),
$$

which tends to zero as $l \rightarrow \infty$ for all $x, y \in B$ by (31). By (36)-(39),

$$
D(x y)=D(x) \theta(y)+\phi(x) D(y)
$$

for all $x, y \in B$. So the additive mapping $D: B \rightarrow B$ is a (θ, ϕ) derivation on B.

It follows from (7) that

$$
3^{2 l}\left\|u\left(\frac{x y}{3^{2 l}}\right)-u\left(\frac{x}{3^{l}}\right) g\left(\frac{y}{3^{l}}\right)-h\left(\frac{x}{3^{l}}\right) f\left(\frac{y}{3^{l}}\right)\right\| \leq 3^{2 l} \varphi\left(\frac{x}{3^{l}}, \frac{y}{3^{l}}\right),
$$

which tends to zero as $l \rightarrow \infty$ for all $x, y \in B$ by (31). Thus

$$
U(x y)=U(x) \theta(y)+\phi(x) D(y)
$$

for all $x, y \in B$. So the additive mapping $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Corollary 2.9. Let $f, g, h, u: B \rightarrow B$ be mappings with $f(0)=$ $g(0)=h(0)=u(0)=0$ for which there exist constants $\epsilon \geq 0$ and $p \in(2, \infty)$ such that

$$
\begin{aligned}
\left\|2 f\left(\frac{x+y}{2}\right)-f(x)-f(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\left\|2 g\left(\frac{x+y}{2}\right)-g(x)-g(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\left\|2 h\left(\frac{x+y}{2}\right)-h(x)-h(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\left\|2 u\left(\frac{x+y}{2}\right)-u(x)-u(y)\right\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|f(x y)-f(x) g(y)-h(x) f(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right), \\
\|u(x y)-u(x) g(y)-h(x) f(y)\| & \leq \epsilon\left(\|x\|^{p}+\|y\|^{p}\right)
\end{aligned}
$$

for all $x, y \in B$. Then there exist unique additive mappings D, θ, ϕ, U : $B \rightarrow B$ such that

$$
\begin{aligned}
\|f(x)-D(x)\| & \leq \frac{3^{p}+3}{3^{p}-3} \epsilon\|x\|^{p}, \\
\|g(x)-\theta(x)\| & \leq \frac{3^{p}+3}{3^{p}-3} \epsilon\|x\|^{p} \\
\|h(x)-\phi(x)\| & \leq \frac{3^{p}+3}{3^{p}-3} \epsilon\|x\|^{p}, \\
\|u(x)-U(x)\| & \leq \frac{3^{p}+3}{3^{p}-3} \epsilon\|x\|^{p}
\end{aligned}
$$

for all $x \in B$. Moreover, $D: B \rightarrow B$ is a (θ, ϕ)-derivation on B, and $U: B \rightarrow B$ is a generalized (θ, ϕ)-derivation on B.

Proof. Defining $\varphi(x, y)=\epsilon\left(\|x\|^{p}+\|y\|^{p}\right)$, and applying Theorem 2.8, we get the desired result.

Corollary 2.10. Let $\theta, \phi: B \rightarrow B$ be additive mappings. Let $f, u: B \rightarrow B$ be mappings with $f(0)=u(0)=0$ for which there exists a function $\varphi: B \times B \rightarrow[0, \infty)$ satisfying (31), (19), (22), (16) and (17). Then there exists a unique (θ, ϕ)-derivation $D: B \rightarrow B$ satisfying (32), and there exists a unique generalized (θ, ϕ)-derivation $U: B \rightarrow B$ satisfying (35).

Proof. Letting $\theta=g$ and $\phi=h$ in the statement of Theorem 2.8, we get the result.

References

[1] M. Ashraf, A. Ali, and S. Ali, On Lie ideals and generalized (θ, ϕ)-derivations in prime rings, Commun. Algebra 32 (2004), 2977-2985.
[2] M. Ashraf, S. M. Wafa, and A. AlShammakh, On generalized (θ, ϕ)-derivations in rings, Internat. J. Math. Game Theo. Algebra 12 (2002), 295-300.
[3] C. Baak and M. S. Moslehian, On the stability of θ-derivations on $J B^{*}$-triples, Bull. Braz. Math. Soc. 38 (2007), 115-127.
[4] C. Baak and M. S. Moslehian, On the stability of J^{*}-homomorphisms, Nonlinear Anal.-TMA 63 (2005), 42-48.
[5] P. Găvruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), 431-436.
[6] B. Hvala, Generalized derivations in rings, Commun. Algebra 26 (1998), 11471166.
[7] K. Jun and Y. Lee, A generalization of the Hyers-Ulam-Rassias stability of Jensen's equation, J. Math. Anal. Appl. 238 (1999), 305-315.
[8] C. Park, Lie *-homomorphisms between Lie C C^{*}-algebras and Lie *-derivations on Lie C^{*}-algebras, J. Math. Anal. Appl. 293 (2004), 419-434.
[9] C. Park, Linear *-derivations on $J B^{*}$-algebras, Acta Math. Scientia 25 (2005), 449-454.
[10] C. Park, Homomorphisms between Lie JC*-algebras and Cauchy-Rassias stability of Lie J^{*}-algebra derivations, J. Lie Theory 15 (2005), 393-414.
[11] C. Park and J. Hou, Homomorphisms between C^{*}-algebras associated with the Trif functional equation and linear derivations on C^{*}-algebras, J. Korean Math. Soc. 41 (2004), 461-477.
[12] Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), 297-300.
[13] Th. M. Rassias, The problem of S.M. Ulam for approximately multiplicative mappings, J. Math. Anal. Appl. 246 (2000), 352-378.
[14] Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), 264-284.

Choonkil Park
Department of Mathematics
Hanyang University
Seoul 133-791, Korea
E-mail: baak@hanyang.ac.kr
Dong Yun Shin
Department of Mathematics
University of Seoul
Seoul 130-743, Korea
E-mail: dyshin@uos.ac.kr

