DOI QR코드

DOI QR Code

HOPF BIFURCATION OF CODIMENSION ONE AND DYNAMICAL SIMULATION FOR A 3D AUTONOMOUS CHAOTIC SYSTEM

  • Li, Xianyi (College of Mathematical Science Yangzhou University) ;
  • Zhou, Zhengxin (College of Mathematical Science Yangzhou University)
  • Received : 2012.10.22
  • Published : 2014.03.31

Abstract

In this paper, a 3D autonomous system, which has only stable or non-hyperbolic equilibria but still generates chaos, is presented. This system is topologically non-equivalent to the original Lorenz system and all Lorenz-type systems. This motivates us to further study some of its dynamical behaviors, such as the local stability of equilibrium points, the Lyapunov exponent, the dissipativity, the chaotic waveform in time domain, the continuous frequency spectrum, the Poincar$\acute{e}$ map and the forming mechanism for compound structure of its special cases. Especially, with the help of the Project Method, its Hopf bifurcation of codimension one is in detailed formulated. Numerical simulation results not only examine the corresponding theoretical analytical results, but also show that this system possesses abundant and complex dynamical properties not solved theoretically, which need further attention.

Keywords

References

  1. G. Alvarez, S. Li, F. Montoya, G. Pastor, and M. Romera, Breaking projective chaos sychronization secure communication using filtering and generalized synchronization, Chaos Solitons Fractals 24 (2005), no. 3, 775-783. https://doi.org/10.1016/j.chaos.2004.09.038
  2. H. Asakura, K. Takemura, Z. Yoshida, and T. Uchida, Collisionless heating of electrons by meandering chaos and its application to a low-pressure Plasma source, Jpn. J. Appl. Phys. 36 (1997), 4493-4496. https://doi.org/10.1143/JJAP.36.4493
  3. S. Celikovsky and G. Chen, On a generalized Lorenz canonical form of chaotic systems, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 8, 1789-1812. https://doi.org/10.1142/S0218127402005467
  4. S. Celikovsky and G. Chen, Hyperbolic-type generalized Lorenz system and its canonical form, Proc. 15th Triennial World Congrss of IFAC, Barcelona, Spain, (2002b), in CD ROM.
  5. S. Celikovsky and G. Chen, On the generalized Lorenz canonical form, Chaos Solitons Fractals 26 (2005), no. 5, 1271-1276. https://doi.org/10.1016/j.chaos.2005.02.040
  6. S. Celikovsky and A. Vaecek, Bilinear systems and chaos, Kybernetika 30 (1994), no. 4, 403-424.
  7. S. Celikovsky and A. Vaecek, Control Systems: from linear analysis to synthesis of chaos, London, Prentice-Hall, 1996.
  8. G. Chen and T. Ueta, Yet another chaotic attractor, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 9 (1999), no. 7, 1465-1466. https://doi.org/10.1142/S0218127499001024
  9. G. Chen and T. Ueta, Bifurcation analysis of Chen's equation, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 10 (2000), no. 8, 1917-1931.
  10. L. O. Chua, M. Itoh, L. Kovurev, and K. Eckert, Chaos synchronization in Chua's circuit, J. Circuits Systems Comput. 3 (1993), no. 1, 93-108. https://doi.org/10.1142/S0218126693000071
  11. K. Huang and G. Yang, Stability and Hopf bifurcation analysis of a new system, Chaos Solitons Fractals 39 (2009), no. 2, 567-578. https://doi.org/10.1016/j.chaos.2007.01.107
  12. Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, second edition, Springer-Verlag, New York, 1998.
  13. C. Li and G. Chen, A note on Hopf bifurcation in Chen's system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 6, 1609-1615. https://doi.org/10.1142/S0218127403007394
  14. T. Li, G. Chen, and Y. Tang, Complex dynamical behaviors of the chaotic Chen's system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 13 (2003), no. 9, 2561-2574. https://doi.org/10.1142/S0218127403008089
  15. T. Li, G. Chen, and Y. Tang, On stability and bifurcation of Chen's system, Chaos Solitons Fractals 19 (2004), no. 5, 1269-1282. https://doi.org/10.1016/S0960-0779(03)00334-5
  16. X. Li and Q. Ou, Dynamical properties and simulation of a new Lorenz-like chaotic system, Nonlinear Dynam. 65 (2011), no. 3, 255-270. https://doi.org/10.1007/s11071-010-9887-z
  17. C. Liu, T. Liu, L. Liu, and K. Liu, A new chaotic attractor, Chaos Solitons Fractals 22 (2004), no. 5 1031-1038. https://doi.org/10.1016/j.chaos.2004.02.060
  18. E. N. Lorenz, Deterministic non-periodic flow, J. Atmospheric Sci. 20 (1963), 130-141. https://doi.org/10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  19. J. Lu and G. Chen, A new chaotic attractor coined, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 3, 659-661. https://doi.org/10.1142/S0218127402004620
  20. J. Lu, G. Chen, and S. Zhang, The compound structure of a new chaotic attractor, Chaos Solitons Fractals 14 (2002), no. 5, 669-672. https://doi.org/10.1016/S0960-0779(02)00007-3
  21. J. Lu, T. Zhou, G. Chen, and S. Zhang, Local bifurcations of the Chen system, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 12 (2002), no. 10, 2257-2270. https://doi.org/10.1142/S0218127402005819
  22. B. Munmuangsaen and B. Srisuchinwong, A new five-term simple chaotic attractor, Phys. Lett. A 373 (2009), 4038-4043. https://doi.org/10.1016/j.physleta.2009.08.068
  23. J. M. Ottino, C. W.Leong, H. Rising, and P. D. Swanson, Morphological structures produced by mixing in chaotic flows, Nature 333 (1988), 419-425. https://doi.org/10.1038/333419a0
  24. O. E. Rossler, An equation for continuous chaos, Phys. Lett. A 57 (1976), 397-398. https://doi.org/10.1016/0375-9601(76)90101-8
  25. C. P. Silva, Silnikov theorem-a tutorial, IEEE Trans. Circuits Systems I Fund. Theory Appl. 40 (1993), no. 10, 657-682. https://doi.org/10.1109/81.246141
  26. L. P. Silnikov, A case of the existence of a countable number of periodic motions, Sov. Math. Docklady 6 (1965), 163-166.
  27. L. P. Silnikov, A contribution of the problem of the structure of an extended neighborhood of rough equilibrium state of saddle-focus type, Math. USSR-Shornik 10 (1970), 91-102. https://doi.org/10.1070/SM1970v010n01ABEH001588
  28. C. Sparrow, The Lorenz Equations: Bifurcations, Chaos, and Strange Attractors, Applied Mathematical Sciences, 41. Springer-Verlag, New York-Berlin, 1982.
  29. J. C. Sprott, Some simple chaotic flows, Phys. Rev. E (3) 50 (1994), no. 2, R647-R650. https://doi.org/10.1103/PhysRevE.50.R647
  30. J. C. Sprott, Simplest dissipative chaotic flow, Phys. Lett. A 228 (1997), no. 4-5, 271-274. https://doi.org/10.1016/S0375-9601(97)00088-1
  31. J. C. Sprott, A new class of chaotic circuit, Phys. Lett. A 266 (2000), 19-23. https://doi.org/10.1016/S0375-9601(00)00026-8
  32. G. Tigan and D. Constantinescu, Heteroclinic orbits in the T and the Lu system, Chaos Solitons Fractals 42 (2009), no. 1, 20-23. https://doi.org/10.1016/j.chaos.2008.10.024
  33. G. van der Schrier and L. Maas, The diffusionless Lorenz equations; Shilnikov bifurcations and reduction to an explicit map, Phys. D 141 (2000), no. 1-2, 19-36. https://doi.org/10.1016/S0167-2789(00)00033-6
  34. A.Wolf, J. B. Swift, H. L. Swinney, and J. A. Vastano, Determining Lyapunov exponents from a time series, Phys. D 16 (1985), no. 3, 285-317. https://doi.org/10.1016/0167-2789(85)90011-9
  35. Z. Wei and Q. Yang, Dynamics of a new autonomous 3-D chaotic system only with stable equilibria, Nonl. Anal.: Real World Applications 12 (2011), 106-118. https://doi.org/10.1016/j.nonrwa.2010.05.038
  36. Q. Yang and G. Chen, A chaotic system with one saddle and two stable node-foci, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 18 (2008), no. 5, 1393-1414. https://doi.org/10.1142/S0218127408021063
  37. Q. Yang, G. Chen, and Y. Zhou, A unified Lorenz-type system and its canonical form, Internat. J. Bifur. Chaos Appl. Sci. Engrg. 16 (2006), no. 10, 2855-1871. https://doi.org/10.1142/S0218127406016501
  38. Y. Yu and S. Zhang, Hopf bifurcation in the Lu system, Chaos Solitons Fractals 17 (2003), no. 5, 901-906. https://doi.org/10.1016/S0960-0779(02)00573-8
  39. Y. Yu and S. Zhang, Hopf bifurcation analysis of the Lu system, Chaos Solitons Fractals 21 (2004), no. 5, 1215-1220. https://doi.org/10.1016/j.chaos.2003.12.063

Cited by

  1. On singular orbits and a given conjecture for a 3D Lorenz-like system vol.80, pp.1-2, 2015, https://doi.org/10.1007/s11071-015-1921-8