DOI QR코드

DOI QR Code

PRECONDITIONED SPECTRAL COLLOCATION METHOD ON CURVED ELEMENT DOMAINS USING THE GORDON-HALL TRANSFORMATION

  • Kim, Sang Dong (Department of Mathematics Kyungpook National University) ;
  • Hessari, Peyman (Institute of Mechanical Engineering Technology Kyungpook National University) ;
  • Shin, Byeong-Chun (Department of Mathematics Chonnam National University)
  • Received : 2013.01.16
  • Published : 2014.03.31

Abstract

The spectral collocation method for a second order elliptic boundary value problem on a domain ${\Omega}$ with curved boundaries is studied using the Gordon and Hall transformation which enables us to have a transformed elliptic problem and a square domain S = [0, h] ${\times}$ [0, h], h > 0. The preconditioned system of the spectral collocation approximation based on Legendre-Gauss-Lobatto points by the matrix based on piecewise bilinear finite element discretizations is shown to have the high order accuracy of convergence and the efficiency of the finite element preconditioner.

Keywords

References

  1. C. Canuto, P. Gervasio, and A. Quarteroni, Finite element preconditioning of G-NI spectral methods, SIAM J. Sci. Comput. 31 (2009/10), no. 6, 4422-4451.
  2. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods in Fluid Dynamics, Springer-Verlag, New York, 1988.
  3. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Fundamentals in Single Domains, Springer-Verlag, Berlin, 2006.
  4. C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral Methods, Evolutions to Complex Geometries and Applications to Fluid Dynamics, Springer-Verlag, Berlin, 2007.
  5. M. O. Deville and E. H. Mund, Finite-element preconditioning for pseudospectral solutions of elliptic problems, SIAM J. Sci. Statist. Comput. 11 (1990), no. 2, 311-342. https://doi.org/10.1137/0911019
  6. W. Fleming, Functions of Several Variables, Addison-Wesley, Reading, Mass., 1965.
  7. D. Funaro, Spectral elements for transport-dominated equations, Lecture notes in computational science and engineering, Vol. 1, Springer-Verlag, Berlin/Heidelberg, 1997.
  8. W. J. Gordon and C. A. Hall, Transfinite element methods: Blending function interpolation over arbitrary curved element domains, Numer. Math. 21 (1973), 109-129. https://doi.org/10.1007/BF01436298
  9. W. J. Gordon and C. A. Hall, Geometric aspects of the finite element method: construction of curvilinear coordinate systems and their application to mesh generation, Int. J. Numer. Meth. Eng. 7 (1973), 461-477. https://doi.org/10.1002/nme.1620070405
  10. W. Heinrichs, Spectral collocation scheme on the unit disc, J. Comput. Phys. 199 (2004), no. 1, 66-86. https://doi.org/10.1016/j.jcp.2004.02.001
  11. S. D. Kim and S. V. Parter, Preconditioning Chebyshev spectral collocation method for elliptic partial differential equations, SIAM J. Numer. Anal. 33 (1996), no. 6, 2375-2400. https://doi.org/10.1137/S0036142994275998
  12. T. A. Manteuffel and J. Otto, Optimal equivalent preconditioners, SIAM J. Numer. Anal. 30 (1993), no. 3, 790-812. https://doi.org/10.1137/0730040
  13. T. A. Manteuffel and S. V. Parter, Preconditioning and boundary conditions, SIAM J. Numer. Anal. 27 (1990), no. 3, 656-694. https://doi.org/10.1137/0727040
  14. Y. Morochoisne, Resolution des equations de Navier-Stokes par une methode pseudo-spectrale en espace-temps, Rech. Aerospat. 1979 (1979), no. 5, 293-306.
  15. S. A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1980), no. 1, 70-92. https://doi.org/10.1016/0021-9991(80)90005-4
  16. S. V. Parter and E. E. Rothman, Preconditioning Legendre spectral collocation approximation to elliptic problems, SIAM J. Numer. Anal. 32 (1995), no. 2, 333-385. https://doi.org/10.1137/0732015
  17. S. V. Parter, Preconditioning Legendre spectral collocation methods for elliptic problems I. Finite differenc operators, SIAM J. Numer. Anal. 39 (2001), no. 1, 330-347. https://doi.org/10.1137/S0036142999365060
  18. S. V. Parter, Preconditioning Legendre spectral collocation methods for elliptic problems II. Finite element operators, SIAM J. Numer. Anal. 39 (2001), no. 1, 348-362. https://doi.org/10.1137/S0036142999365072
  19. A. Quarteroni and A. Valli, Numerical Approximation of Partial Differential Equations, Springer-Verlag, Berlin, Heidelberg, 1994.
  20. W. R. Wade, An Introduction to Analysis, third edition, Prentice Hall, 2004.

Cited by

  1. Least-squares spectral element preconditioners for fourth order elliptic problems vol.74, pp.3, 2017, https://doi.org/10.1016/j.camwa.2017.04.032
  2. First order system least squares method for the interface problem of the Stokes equations vol.68, pp.3, 2014, https://doi.org/10.1016/j.camwa.2014.06.003
  3. First order system least squares pseudo-spectral method for Stokes–Darcy equations vol.120, 2017, https://doi.org/10.1016/j.apnum.2017.04.010
  4. Pseudospectral Least Squares Method for Stokes--Darcy Equations vol.53, pp.3, 2015, https://doi.org/10.1137/140954350
  5. Least-squares spectral method for velocity-vorticity-pressure form of the Stokes equations vol.32, pp.2, 2016, https://doi.org/10.1002/num.22028
  6. Analysis of least squares pseudo-spectral method for the interface problem of the Navier–Stokes equations vol.69, pp.8, 2015, https://doi.org/10.1016/j.camwa.2015.01.015