DOI QR코드

DOI QR Code

Characteristics of Microbial Fuel Cells Using Livestock Waste and Degradation of MEA

가축 분뇨를 이용한 미생물 연료전지의 특성 및 MEA 열화

  • Received : 2013.10.23
  • Accepted : 2013.11.24
  • Published : 2014.04.01

Abstract

Microbial fuel cells (MFC) were operated with livestock wastes and PEMFC (Proton Exchange Membrane Fuel Cells) MEA (Membrane and Electrode Assembly). OCV of MFC with mixtures of microbial was higher than that of MFC with single microbial. MFC using pig wastes showed highest OCV (540 mV) among cow waste, chicken waste and duck waste. And the power density of MFC using pig waste was $963mW/m^2$. Contamination of MEA with $Na^{2+}$, $Ca^{2+}$, $K^+$ ion and impurities was the one cause for low performance of MFC during operation.

고분자전해질 연료전지용 MEA(Membrane and Electrode Assembly)와 가축분뇨를 이용해 미생물연료전지(MFC)를 구동하였다. 여러 균을 혼합해 MFC를 구동했을 때 개별적으로 구동했을 때보다 높은 개회로전위(OCV)를 나타냈다. 돼지분뇨, 소분뇨, 닭분뇨, 오리 분뇨 중 돼지 분뇨를 이용했을 때 제일 높은 OCV 540mV를 보였다. 그리고 돼지분뇨에서 최고 $963mW/m^2$의 전력이 발생하였다. MFC 구동과정에서 MEA의 $Na^{2+}$, $Ca^{2+}$, $K^+$ 이온 및 불순물들에 의한 오염이 MFC의 낮은 성능의 한 원인임을 확인하였다.

Keywords

References

  1. Nester, E. W., Anderson, D. G., Roberts, C. E., Nerster, M. T., Microbiology: A Human Perspective, 7th ed., McGraw-Hill, New York, (2011).
  2. Ministry of Environment, Environmemtal Statistics Yearbook, No. 25, Ministry of Environment(2012).
  3. http://eztaxon-e.ezbiocloud.net.
  4. Du, Z., Li, H. and Gu, T., "A State of the Art Review on Microbial Fuel Cells: A Promising Technology for Wastewater Treatment and Bioenergy," Biotechnol. Adv., 25, 464-482(2007). https://doi.org/10.1016/j.biotechadv.2007.05.004
  5. Kim, J. R., Min, B. K. and Logan, B. E., "Evaluation of Procedures to Acclimate a Microbial Fuel Cell for Electricity Production," Appl. Microbiol. Biotechnol., 68, 23-30(2005). https://doi.org/10.1007/s00253-004-1845-6
  6. Min, B. K., Kim, J. R., Oh, S. E., Regan, J. M. and Logan, B. E., "Electricity Generation from Swine Wastewater Using Microbial Fuel Cells," Water Res., 39, 4961-4968(2005). https://doi.org/10.1016/j.watres.2005.09.039
  7. Lee, H., Kim, T. H., Sim, W. J., Kim, S. H., Ahn, B. K., Lim, T. W. and Park, K. P., "Pinhole Formation in PEMFC Membrane After Electrochemical Degradation and Wet/dry Cycling Test," Korean J. Chem. Eng., 28, 487-491(2011). https://doi.org/10.1007/s11814-010-0381-6
  8. Song, J. H., Kim, S. H., Ahn, B. K., Ko, J. J. and Park, K. P., "Effect of Electrode Degradation on the Membrane Degradation in PEMFC," Korean Chem. Eng. Res.(HWAHAK KONGHAK), 51(1), 68-72(2013). https://doi.org/10.9713/kcer.2013.51.1.68
  9. Pham, T. H., Boon, N., Aelterman, P., Clauwaert, P., Vanhaecke, L., Verstraete, W. and Rabaey, K., "Metabolites Produced by Pseudomonas sp. Enable a Gram-positive Bacterium to Achieve Extracellular Electron Transfer," Appl. Microbiol. Biotechnol., 77, 1119-1129(2008). https://doi.org/10.1007/s00253-007-1248-6
  10. Watanabe, K., Manefield, M., Lee, M. and Kouzuma, A., "Electron Shuttles in Biotechnology," Curr. Opin. Biotechnol., 20, 633-642(2009). https://doi.org/10.1016/j.copbio.2009.09.006
  11. Liu, M., Yuan, Y., Zhang, L. X., Zhuang, L., Zhou, S. G. and Niet, J. R., "Bioelectricity generation by a Gram-positive Corynebacterium sp. Strain MFC03 Under Alkaline Condition in Microbial Fuel Cells," Bioresour. Technol., 101, 1807-1811(2010). https://doi.org/10.1016/j.biortech.2009.10.003
  12. Dyka, J. S., Sakkab, M., Sakkab, K. and Pletschkea, B. I., "The Cellulolytic and Hemi-cellulolytic System of Bacillus licheniformis SVD1 and the Evidence for Production of a Large Multi-enzyme Complex," Enzyme Microb. Technol., 45, 372-378(2009). https://doi.org/10.1016/j.enzmictec.2009.06.016
  13. Amutha, K. B. and Murugesan, A. G., "Biohydrogen Production Using Corn Stalk Employing Bacillus licheniformis MSU AGM 2 strain," Renewable Energy, 50, 621-627(2013). https://doi.org/10.1016/j.renene.2012.07.033
  14. Wang, W., Wang, Z., Lin, X., Wang, Z. W. and Fu, F. F., "Simultaneous Analysis of Seven Oligopeptides in Microbial Fuel Cell by Micro-fluidic Chip with Reflux Injection Mode," Talanta, 100, 338-343(2012). https://doi.org/10.1016/j.talanta.2012.07.079
  15. Ruan, Z., Zhou, S., Jiang, S., Sund, L., Zhaie, Y., Wang, Y., Chen, C. and Zhao, B., "Isolation and Characterization of a Novel Cinosulfuron Degrading Kurthia Species from a Methanogenic Microbial Consortium," Bioresour. Technol., 147, 477-483(2013). https://doi.org/10.1016/j.biortech.2013.08.017
  16. Moreau1, J. L., Arnaud1, A. and Galzy1, P., "Optimization of Culture Conditions of Brevibacterium sp. for the Production of Amidase and Adipamidase," Midrobiological Research, 149(1), 47-53(1994). https://doi.org/10.1016/S0944-5013(11)80135-7
  17. Cerqueira, V. S., Hollenbach, E. B., Maboni, F., Vainstein, M. H., Camargo, F. A. O., Carmo, M. D., Peralba, R. and Bento, F. M., "Biodegradation Potential of Oily Sludge by Pure and Mixed Bacterial Cultures," Bioresour. Technol., 102, 11003-1010(2011). https://doi.org/10.1016/j.biortech.2011.09.074
  18. Morrisa, J. M., Jin, S., Crimid, B. and Prudend, A., "Microbial Fuel Cell in Enhancing Anaerobic Biodegradation of Diesel," Chem. Eng. J., 146, 161-167(2009). https://doi.org/10.1016/j.cej.2008.05.028
  19. Nandy, A., et al., "Utilization of Proteinaceous Materials for Power Generation in a Mediatorless Microbial Fuel Cell by a New Electrogenix Bacteria Lysinibacillus sphaericus VA5," Enzyme Microb. Technol., 53, 339-344(2013). https://doi.org/10.1016/j.enzmictec.2013.07.006
  20. Zuo, Y., Xing, D., Regan, J. M. and Logan, B. E., " Isolation of the Exoelectrogenic Bacterium Ochrobactrum Anthropi YZ-1 by Using a U-tube Microbial Fuel Cell," Appl. Environ. Microbiol, 74, 3130-3137( 2008). https://doi.org/10.1128/AEM.02732-07
  21. Lee, D. J., Show, K. Y. and Wang, A., "Unconventional Approaches to Isolation and Enrichment of Functional Microbial Consortium - A Review," Bioresour. Technol., 136, 697-706(2013). https://doi.org/10.1016/j.biortech.2013.02.075

Cited by

  1. 돼지 분뇨와 sPAES 막을 이용한 미생물 연료전지의 특성 vol.54, pp.4, 2014, https://doi.org/10.9713/kcer.2016.54.4.453