DOI QR코드

DOI QR Code

Anti-aging Effect of Inula britannica var. chinensis Flower Extract According to the Extraction Temperature

추출 온도에 따른 금불초 꽃 추출물의 항노화 효능

  • Jeon, Ji Min (R&D Center, ACT Co., Ltd.) ;
  • Yoo, Dae Sung (R&D Center, ACT Co., Ltd.) ;
  • Cheon, Jong Woo (R&D Center, ACT Co., Ltd.) ;
  • Kwon, Soon Sik (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Jeon, So Ha (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology) ;
  • Park, Soo Nam (Department of Fine Chemistry, Cosmetic R&D Center, Seoul National University of Science and Technology)
  • 전지민 ((주)에이씨티 기술연구소) ;
  • 유대성 ((주)에이씨티 기술연구소) ;
  • 천종우 ((주)에이씨티 기술연구소) ;
  • 권순식 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 전소하 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소) ;
  • 박수남 (서울과학기술대학교 정밀화학과, 화장품종합기술연구소)
  • Received : 2013.10.14
  • Accepted : 2013.11.20
  • Published : 2014.03.31

Abstract

In this study, the extracts of Inula britannica var. chinensis (I. britannica) flower were extracted at three different temperatures (room temperature, $45^{\circ}C$, and $65^{\circ}C$) and their anti-aging effects were studied. Before investigating anti-aging effects of the extracts, their cytotoxicity was tested on B16F10, Hs683, and HaCaT cells. All extracts showed no cytotoxicity at the concentration less than 0.1% (v/v). Melanin synthesis inhibitory activities in B16F10 cells and reverse transcriptase polymerase chain reaction (RT-PCR) in Hs683 and HaCaT cells were used to see their anti-aging effects. The room temperature extract at 0.1% showed 24.5% melanin synthesis inhibition, which was better than the $45^{\circ}C$ and $65^{\circ}C$ extracts. In addition, expression rates of the room temperature extract at 0.1% on HAS-1, HAS-2, and HAS-3 related to hyaluronan synthase genes were 123.3%, 137.8%, 133.2%, respectively. which were higher than reference material of L-ascorbic acid. Expression rates of the $45^{\circ}C$ extract at 0.1% on TNF-${\alpha}$, COX-2, and IL-$1{\alpha}$, which are inflammatory related genes, was suppressed to 30.3%, 12.8%, 25.7%, respectively. It was better in anti-in flammatory effect than the room temperature and $65^{\circ}C$ extracts. As results, we showed that I. britannica var. chinensis flower extarcts decreased melanin production and expression of inflammatory related genes and increased the expression rate of hyaluronan synthase genes. Thus, it is believed that the extracts affect anti-aging effects of skin through whitening, moisturizing, and anti-inflammatory processes and could be applicable to cosmetics as a functional cosmetic ingredient.

본 연구에서는 추출 온도에 따른 금불초 꽃(I. britannica var. chinensis) 추출물의 항노화 효능을 알아 보았다. 추출 온도에 따른 세포독성을 살펴본 결과, 상온, $45^{\circ}C$$65^{\circ}C$ 추출물 모두 0.1% 이하의 농도에서 세포독성이 관찰되지 않았다. 0.1% 이하의 농도에서 항노화 효능평가를 수행한 결과, 0.1% 농도의 상온 추출물 경우에 멜라닌 생성 억제율은 24.5%로 $45^{\circ}C$$65^{\circ}C$ 추출물과 비교하여 멜라닌 생성 억제율이 큰 것으로 나타났다. 0.1% 농도의 상온 추출물을 처리한 세포의 히알루론산 합성 관련 유전자 HAS-1, HAS-2 및 HAS-3의 발현율은 각각 123.3%, 137.8% 및 133.2%를 나타냈으며, 이는 비교물질인 L-ascorbic acid (115.6%, 121.0% 및 131.4%) 경우 보다 약간 크게 나타났다. 금불초 꽃 45 $^{\circ}C$ 추출물의 경우, 0.1%의 농도에서 염증유발 유전자인 TNF-${\alpha}$, COX-2 및 IL-1${\alpha}$의 발현율이 대조군 대비 각각 30.3%, 12.8%, 25.7%로 감소하였으며, 이는 상온, $65^{\circ}C$ 추출물과 비교하여 염증유발 유전자 발현 억제 효과가 더 큰 것으로 나타났다. 이상의 결과들로 볼 때, 금불초 꽃 추출물은 추출 온도에 따라 멜라닌 생성 억제, 히알루론산 합성 관련 유전자 발현 증가 효과, 염증유발 유전자 발현 억제 효과를 나타내며, 그로 인하여 피부에서 미백, 보습, 항염 효능을 통해 피부 항노화 효능을 가질 것으로 사료된다. 이는 금불초 추출물이 항노화 화장품 원료로서 응용 가능성이 있음을 시사한다.

Keywords

References

  1. S. Claude, K. Manabu, M. Laura, and P. Lester, Antioxidants modulate acute solar ultraviolet radiation- induced NF-kappa-B activation in a human keratinocyte cell line, Free Radic. Biol. med., 26, 174 (1999). https://doi.org/10.1016/S0891-5849(98)00212-3
  2. S. Sakai, T. Sayo, S. Kodama, and S. Inoue, N-Methyl-L-serine stimulates hyaluronan production in human skin fibroblasts, Skin Pharmacol. Physiol., 12, 276 (1999). https://doi.org/10.1159/000066253
  3. S. I. Lamberg and A. C. Stoolmiller, Glycosaminoglycans, J. Invest. Dermatol., 63, 433 (1974). https://doi.org/10.1111/1523-1747.ep12680346
  4. Y. J. Kim, Y. R. Lee, J. W. Cheon, and H. S. Lee, Anti-aging effect of Ligustrum japonicum extract in the human fibroblast cells, J. Soc. Cosmet. Scientists Korea, 36(4), 295 (2010).
  5. I. Ghersetich, T. Lotti, G. Campanile, C. Grappone, and G. Dini, Hyaluronic acid in cutaneous intrinsic aging, Int. J. Dermatol., 33, 119 (1994). https://doi.org/10.1111/j.1365-4362.1994.tb01540.x
  6. S. H. Kim, G. W. Nam, H. K. Lee, S. J. Moon, and I. S. Chang, The effects of musk T on peroxisome proliferator-activated receptor [PPAR]-alpha activation, epidermal skin homeostasis and dermal hyaluronic acid synthesis, Arch. Dermatol. Res., 298, 273 (2006). https://doi.org/10.1007/s00403-006-0684-y
  7. I. Gheretich, T. Lotti, G. Campanile, C. Grappone, and G. Dini, Hyaluronic acid in custaneous intrinsic aging, Int. J. Dermatol., 33, 119 (1994). https://doi.org/10.1111/j.1365-4362.1994.tb01540.x
  8. S. Karvinen, S. Pasonen-Seppanen, J. M. Hyttinen, J. P. Pienimaki, K. Toronen, T. A. Jokela, M. I. Tammi, and R. Tammi, Keratinocyte growth factor stimulates migration and hyaluronan synthesis in the epidermis by activation of keratinocyte hyaluronan synthase 2 and 3, J. Biol. Chem., 278(49), 49495 (2003). https://doi.org/10.1074/jbc.M310445200
  9. K. Chiba, T. Sone, K. Kawakami, and M. Onoue, Skin roughness and wrinkle formation induced by repeated application of squalene monohydroperoxide to the hairless mouse, Exp. Dermatol., 8, 471 (1999). https://doi.org/10.1111/j.1600-0625.1999.tb00305.x
  10. A. Oikarinen, The aging of skin: Chronoaging versus photoaging, Photodermatol. Photoimmunol. Photomed., 7, 3 (1990).
  11. M. Yamauchi, P. Prisayanh, Z. Haque, and D. T. Woodley, Collagen cross-linking in sun-exposed and unexposed sites of aged human skin, J. Invest. Dermatol., 97, 938 (1991).
  12. B. A. Jurkiewicz and G. R. Buettner, Ultraviolet light-induced free radical formation in skin : an electron paramagnetic resonance study, Photochem. Photobiol., 59(1), 1 (1994). https://doi.org/10.1111/j.1751-1097.1994.tb04993.x
  13. S. N. Park, Antioxidative properties of baicalein, component from Scutellaria baicalensis Georgi and its application to cosmetics (I), J. Korean Ind. Eng. Chem., 14(5), 657 (2003).
  14. H. Z. Hill, W. Li, P. Xin, and D. L. Michell, Melanin: a two edged sword?, Pigment Cell Res., 10, 158 (1998).
  15. R. E. Boissy, Melanosome transfer to and translocation in the keratinocyte, Exp. Dermatol., 12(2), 5 (2003). https://doi.org/10.1034/j.1600-0625.12.s2.1.x
  16. M. H. Jin, E. T. Jeong, M. S. Kim, H. J. Song, T. J. Kwak, S. G. Park, and S. M. Lee, The effects of polydatin isolated from Polygonum cuspidatum on melanogenesis and wrinkle formation, J. Soc. Cosmet. Scientists Korea, 37(4), 327 (2011).
  17. Y. P. Cheon, M. L. Mollah, C. H. Park, J. H. Hong, G. D. Lee, J. C. Song, and K. S. Kim, Inhibition effects of water extract of Bulnesia sarmienti on inflammatory responce in LPS-induced RAW 264.7 cell line, J. Life Science, 19, 479 (2009). https://doi.org/10.5352/JLS.2009.19.4.479
  18. K. M. Mohler, D. S. Torrance, C. A. Smith, R. G. Goodwin, K. E. Stremler, and V. P. Fung, Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists, J. Immunol., 151, 1548 (1993).
  19. S. S. Jew, O. N. Bae, and J. H. Chung, Anti-inflammatory effects of asiaticoside on inducible nitric oxide synthase and cyclooxygenase-2 in RAW 264.7 cell line, J. Toxicol. Pub. Health, 19, 33 (2003).
  20. J. M. Jeong, Antioxidative and antiallergic effects of aronia (Aronia melanocarpa) extract, Korean Soc. Food Sci. Nutr., 37, 1109 (2008). https://doi.org/10.3746/jkfn.2008.37.9.1109
  21. W. Lesslauer, H. Tabuchi, R. Gentz, M. Brockhaus, E. J. Schlaeger, and G. Grau, Recombinant soluble tumor necrosis factor receptor proteins protect mice from lipopolysaccharide-induced lethality, Eur. J. Immunol., 21, 2883 (1991). https://doi.org/10.1002/eji.1830211134
  22. E. H. Kim, J. E. Kim, K. H. Kim, E. Y. Na, S. K. Lee, H. M. Jeong, H. J. Lee, and S. N. Park, Antibacterial and antioxidative activities of Inula britannica flower extract, J. Soc. Cosmet. Scientists Korea, 35(3), 209 (2009).
  23. S. N. Park, Effects of natural products on skin cells- action and suppression of reactive oxygen species, J. Soc. Cosmet. Scientists Korea, 25(2), 77 (1999).
  24. J. E. Kim, A. R. Kim, M. J. Kim, and S. N. Park, Antibacterial, antioxidative and antiaging effects of Allium cepa Peel Extracts, Appl. Chem. Eng., 22(2), 178 (2011).
  25. S. S. Kwon, S. H. Jeon, J. M. Jeon, J. W. Cheon, and S. N. Park, Antioxidative effects of Inula britannica var. chinensis Flower Extracts according to the flowering period and species of Inula britannica var. chinensis, J. Soc. Cosmet. Scientists Korea, 39(3), 195 (2013). https://doi.org/10.15230/SCSK.2013.39.3.195
  26. J. E. Kim, A. R. Kim, and S. N. Park, A study on the stability and clinical trial for the cream containing Inula britannica flower extract, J. Soc. Cosmet. Scientists Korea, 37(2), 129 (2011).
  27. G. S. Sim, J. H. Kim, B. C. Lee, D. H. Lee, G. S. Lee, and H. B. Pyo, Inhibitory effects on melanin production in B16 melanoma cells of Sedum sarmentosum, Yakhak Heoji, 52(3), 165 (2008).
  28. C. L. Phillips, S. B. Combs, and S. R Pinnell, Effects of ascorbic acid on proliferation and collagen synthesis in relation to the donor age of human dermal fibroblasts, J. Invest. Dermatol., 103(2), 228 (1994). https://doi.org/10.1111/1523-1747.ep12393187
  29. R. M. Colven and S. R. Pinnell, Topical vitamin C in aging, Clin. Dermatol., 14(2), 227 (1996). https://doi.org/10.1016/0738-081X(95)00158-C
  30. L. A. Milo, K. A. Reardon, and K. A. Tappenden, Effects of short-chain fatty acid-supplemented total parenteral nutrition on intestinal pro-inflammatory cytokine abundance, Dig. Dis. Sci., 47(9), 2049 (2002). https://doi.org/10.1023/A:1019676929875

Cited by

  1. Applicability of Lindera obtusiloba Flower Extracts as Cosmetic Ingredients vol.15, pp.2, 2017, https://doi.org/10.20402/ajbc.2016.0088
  2. Anti-Skin Cancer Activities of Apostichopus japonicus Extracts from Low-Temperature Ultrasonification Process vol.2017, 2017, https://doi.org/10.1155/2017/6504890