정방형 실린더의 모서리 원형화에 따른 유동 불안정성의 변화

박 두 현, 양 경 수,* 이 경 준, 강 창 우

인하대학교 기계공학과

EFFECTS OF ROUNDING CORNERS ON THE FLOW PAST A SQUARE CYLINDER

Doohyun Park, Kyung-Soo Yang,^{*} Kyongjun Lee and Changwoo Kang Dept. of Mechanical Engineering, Inha University

This study performed numerical analysis for the characteristics of flow-induced forces and the flow instability depending on the cross-sectional shape of the cylinder in laminar flow. To implement the cylinder cross-section, we adopted an Immersed Boundary Method with marker particles. We analyzed flow characteristics based on the radius of corner curvature. Main parameters are corner radius and Reynolds number (Re). With Re = 40, 50, 150 we calculated the flow field, drag coefficient, RMS of lift coefficient, pressure coefficient and Strouhal number in conjunction with the corner radius variation. Also, we calculated critical Reynolds number (Re_c) depending on the corner radius variation.

Key Words : 가상경계법(IBM), 정방형 실린더(Square Cylinder), 원형화(Rounding), 유동 불안정성(Flow Instability)

1.서 론

원형 실린더와 정방형 실린더 같은 bluff body 주위의 유동 은 공학적으로 매우 중요한 문제이다. 실린더 형태의 구조물 을 지나는 유동의 예로는 교량, 고층 건물, 열전달 원형 튜브 등이 있다. 실린더를 지나는 유동에 대한 실험적 또는 수치 해석적인 연구는 오래전부터 많이 수행되어왔다[1-9]. 이러한 실린더형 장애물을 지나는 유동에서 주목할 만한 점은 실린 더 후류의 유동과 그에 따른 유체력의 변화이다. 일반적으로 같은 유동장 내에서 원형 실린더보다 정방형 실린더가 더 많 은 항력을 받는다. 따라서 모서리를 부드러운 원형으로 바꾸 어 항력을 줄이는 방법이 연구되어 왔다. Bearman et al.[2]은 실린더 모서리의 곡률에 따른 유체력의 변화를 실험적으로 연구하였다. 또한, Dalton and Zheng[3]은 수치 해석을 통해 Re = 250과 1,000에 대하여 모서리 원형화에 따른 실린더 후류의 유동에 대하여 연구하였다. 하지만, 앞선 연구에서 고 려된 모서리 곡률 반경의 수는 적고, 임계 Re 근처에서 곡률

Received: January 27, 2014, Revised: March 12, 2014, Accepted: March 12, 2014.

* Corresponding author, E-mail: ksyang@inha.ac.kr
DOI http://dx.doi.org/10.6112/kscfe.2014.19.1.057
© KSCFE 2014

의 변화에 따른 유동 불안정성에 대한 연구는 자세히 진행되 지 않았다.

따라서 본 연구는 정방형 실린더의 모서리를 원형화하면서 각 경우에 대해 유동 불안정성 해석을 수행하여 임계 레이놀 즈 수를 찾고, 레이놀즈 수를 변화하며 정상 상태와 비정상 상태에 대해 계산을 수행하여 유동 특성과 유체력을 해석하 였다.

2. 수치 해석 기법

2.1 지배 방정식

지배 방정식은 비압축성 2차원 유동에 대한 연속 방정식, 운동량 방정식으로 구성된다.

$$\frac{\partial u_j}{\partial x_j} = 0 \tag{1}$$

$$\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_i} = -\frac{\partial p}{\partial x_i} + \frac{1}{Re} \frac{\partial^2 u_i}{\partial x_i \partial x_j} + f_i \quad i = 1,2$$
(2)

식 (1), (2)는 입구 속도 *U*, 실린더 지름 *D*로 무차원화된 식 이며, 가상경계법(Immersed Boundary Method)[10]에 의해 추가 된 *f_i*는 운동량 부가를 의미한다. *u*는 흐름방향(streamwise,

Fig. 1 Definition of cylinder cross section

x) 속도 성분이며, v는 수직방향(normal, y)의 속도 성분이다. p는 순간 압력이다. Re는 UD/v로 정의된다. v는 작동 유 체의 동점성 계수이다.

각 지배 방정식은 직교좌표계에서 유한체적법(Finite Volume Method)으로 차분되었다. 공간 차분은 중앙차분법을 사용하였다. 시간 차분은 운동량 방정식의 경우 대류항에 대 하여 3차 정확도의 Runge-Kutta 양해법(explicit)으로 적분하였 고 점성항에 대하여 Crank-Nicolson의 음해법(implicit)으로 적 분하였다. 연속 방정식과 운동량 방정식을 분리하기 위하여 Fractional Step[11] 기법이 사용되었다.

고체 형상을 정의할 때 기존의 가상경계법은 복잡한 형상 의 물체를 구현하기 위해서 물체 표면을 나타내는 방정식을 이용하였지만, 이런 방법의 경우에는 간단한 형상에만 적용할 수 있으며, 형상이 복잡해지면 정확한 물체의 표면을 구현하 지 못한다는 어려움이 있다. 이러한 문제를 해결하기 위해서 임의의 형상을 쉽게 구현할 수 있는 표시입자(marker particle)[12]를 이용한 가상경계법 기술을 도입하였다.

2.2 계산 영역과 경계 조건

정방형 실린더의 각 모서리에 원을 내접시키고 그 원의 반 지름을 곡률 반경(r)으로 정의하였다. 뾰족한 모서리를 잘라 내고 내접한 원으로 모서리를 대체함으로써 형태를 변화하였 다(Fig. 1). r을 0에서 D/2까지 0.0625D씩 증가시켜 원과 정방형 사이에 7가지 경우에 대하여 계산을 수행하였다(D는 실린더 지름). r을 D로 무차원화하여(r/D), 각각 0.0, 0.0625, 0.125, 0.1875, 0.25, 0.3125, 0.375, 0.4375, 0.5이다. 따라서 총 계산되는 경우는 9가지이며, r/D=0.0에서 정방형 실린더, r/D=0.5에서는 원형 실린더가 된다.

전체 계산 영역은 왼쪽 아래 모서리를 원점으로 0 ≤ x ≤ 70D, 0 ≤ y ≤ 100D이고, 실린더의 중심은 x = 33.5D, y = 50D에 위치한다. 각 실린더에 접하는 정사

Fig. 2 Computational mesh for the case r/D = 0.5

Fig. 3 Computational domain and boundary condition

각형 영역 안에는 64×64개의 균일하게 분포된 격자를 사용하 였으며(r/D=0.0625, 0.125의 경우는 256×256개의 격자를 사용함.), 전체 격자는 *x*방향과, *y*방향으로 불균일 (non-uniform)하게 확장되었다. 격자점의 수는 격자 세분화 연 구(grid-refinement study)를 통해 결정하였으며 사용된 전체 격 자점 수는 320×192이다(Fig. 2). 입구와 출구에서는 각각 Dirichlet (u = U, v = 0)경계조건과 대류 경계조건[4]이 사용 되었으며 계산영역 윗면과 아랫면에서는 slip 조건 $(\partial u/\partial y = 0, v = 0)$ 을 사용하였다. 물체 표면에서는 no-slip 조건을 사용하였다(Fig. 3).

3. 수치 해석 기법의 검증

코드의 검증을 위해 Re = 100에서 원형 실린더에 대하여 계산을 수행하였다. 이는 이미 많은 연구자들이 연구를 수행

Fig. 4 Streamlines for steady flow, Re = 40; (a) r/D = 0.0 (b) r/D = 0.25 (c) r/D = 0.5

한 바 있는 경우이다. 전체 계산영역과 경계조건은 2.2절에서 기술된 것과 동일하다. 사용한 격자점 수는 실린더에 접하는 정사각형 영역 안에 64×64개, 전체 320×192개의 격자를 사용 하였다. 그 결과는 Table 1에 나타내었으며, 다른 연구자들과 일치하는 결과를 얻을 수 있었다.

4.결 과

4.1 정상 상태 유동 특성

Fig. 4는 *Re* = 40인 정상(steady) 유동에서 *r*/*D*의 변화에 따른 유선을 보여준다. 모든 경우에 실린더 후방에서 와류가 상하 대칭적으로 생성되고 그 크기는 *r*/*D*가 증가할수록 작 아지는 것을 볼 수 있다.

 Fig. 5는 r/D 변화에 따른 항력계수($C_D = drag/(\frac{1}{2}\rho U^2 D)$)

 를 나타낸다($\frac{1}{2}\rho U^2$ 는 동압). r/D가 0.0에서 0.5까지 커질수

Fig. 5 Drag coefficient at Re = 40

Fig. 6 Wall pressure coefficient at Re = 40

록 C_D 가 선형적으로 감소하는 것을 볼 수 있다. 항력은 압 력과 전단력의 x축 방향 합력으로 계산된다. 항력을 압력과 전단력에 의한 힘으로 나누어 각각 계산한 결과, 전체 항력에 서 압력이 차지하는 비율은 약 66~82%로 계산되었고, 전체 항력 중 압력의 영향이 전단력 보다 더 큰 것을 알 수 있다. 따라서 압력에 대한 자세한 해석이 필요하다고 생각된다. Fig. 6은 r/D 변화에 따른 실린더 표면에서의 압력계수 $(C_P = (p - p_{\infty})/(\frac{1}{2}\rho U^2))$ 분포를 나타낸다. 여기서 p_{∞} 은 입

Table 1 Simulation results of mean drag coefficient (C_D), amplitude of lift coefficient ($C_{L,\max} - \overline{C_L}$), and Strouhal number (St) of vortex shedding for flow past a circular cylinder at Re = 100

	$\overline{C_D}$	$C_{L,\max} - \overline{C_L}$	St
Present	1.29	0.30	0.165
Park et al.[1]	1.33	0.33	0.165
Braza et al.[5]	1.28	0.29	0.16
Saiki and Biringen[13]	1.26	-	0.171
Kang[14]	1.33	0.32	0.165

구에서 공간 평균된 압력을 나타낸다.

실린더의 맨 앞부분 즉, 정체점(stagnation point)을 $\theta = 0^{\circ}$ 로 두고 시계방향으로 회전하여 θ=180°까지 나타냈다. r/D=0.0일 때 즉, 정방형 실린더의 경우에 θ 가 약 40°이 하로 작을 때에는 C_p 의 변화가 아주 작다가, $\theta = 45^{\circ}$ (모서 리)에서 Cp가 급격히 낮아지는 것을 볼 수 있다. 하지만 r/D를 증가시키면 그 변화가 완만해짐을 볼 수 있다. 또한 r/D가 커짐에 따라 최소값이 나타나는 각도가 커져 우측으 로 이동하고, 그 최소값은 증가하는 것을 볼 수 있다. 압력에 의한 항력은 실린더의 전방과 후방의 압력차이로 계산되고, 그 압력차이가 작을수록 항력이 감소한다. 항력은 흐름방향의 실린더에서는 힘이므로. 정방형 $0 \le \theta \le 45$ °와 $135^{\circ} \le \theta \le 180^{\circ}$ 구간의 압력이 항력을 결정한다. r/D가 증가하여 모서리의 곡면이 길어지면 $45^{\circ} \le \theta \le 135^{\circ}$ 인 구 간에서도 압력에 의한 수평 방향 힘이 고려된다. 하지만 $45^{\circ} \le \theta \le 135^{\circ}$ 구간에서는 수평 방향 성분이 수직 방향 성분에 비해 작으므로 항력 계산에 미치는 영향이 작다고 할 수 있다. 따라서 모든 r/D에 대한 항력 계산에 있어서 $0^{\circ} \le \theta \le 45^{\circ}$ 와 $135^{\circ} \le \theta \le 180^{\circ}$ 구간의 압력 값이 더 중요하다고 판단된다. Fig. 6을 보면, $0^{\circ} \le \theta \le 45^{\circ}$ 에서 r/D가 증가할수록 C_p 는 감소하고, $135^\circ \le \theta \le 180^\circ$ 에서 는 r/D의 변화에 따라 Cp의 차이가 아주 작은 것을 볼 수 있다. 그러므로 실린더의 전방과 후방의 압력 차이는 r/D가 증가할수록 작아지고 그로 인하여 항력이 작아진 것을 추측 할 수 있다.

4.2 Primary 유동 불안정성

유동장 내 실린더형 장애물이 존재하면, 실린더에서 발생 하는 전단층으로 인해 유동장 내 유동 불안정성이 증가된다. 더불어 실린더 단면의 형상에 따라 유동 불안정성이 각기 다 른 특성을 보일 것으로 예상된다. 이런 유동 불안정성을 Stuart-Landau (SL) 방정식으로 해석할 수 있다. 유동 불안정성 이 발생하는 *Re* 근처에서는 다음의 SL방정식을 만족한다 [15,16].

$$\frac{dA}{dt} = \sigma(Re)A - l|A|^2A \tag{3}$$

여기서, A(t)는 특성 진폭(characteristic amplitude)이며, $\sigma = \sigma_r + i\sigma_i$ 이고 σ_r 은 유동 불안정성 모드의 선형 증가율 (linear growth rate)을, $l = l_r + il_i$ 은 첫 번째 Landau 상수(the first Landau constant)를 각각 나타낸다. $\sigma_r = 0$ 에서 존재하는 임계 Reynolds 수(Re_c) 근처에서 식 (3)의 실수부분을 선형화

Fig. 7 Critical Reynolds numbers vs r/D

하면, 유동 불안정성의 순간 증가율에 대한 식을 얻을 수 있 다[15].

$$\frac{1}{|A|} \frac{d|A|}{dt} = \sigma_r - l_r |A|^2 = \sigma_r \left(1 - \frac{|A|^2}{|A|_{sat}^2} \right)$$
(4)

임계 Re 근처에서 σ_r 은 $(Re - Re_c)$ 의 선형 함수가 되며, 다음 식과 같다.

$$\sigma_r = K(Re - Re_c) \tag{5}$$

여기서 K는 양의 상수가 된다. Park[17]과 Sohankar et al.[6] 은, 임계 Re를 측정하기 위해 특성 진폭 A(t)의 함수로 양 력계수를 사용하였다. 본 연구에서도 A(t)의 함수로 양력계 수를 사용하였다. Supercritical 상태의 경우 양력계수의 증폭 과정을 통해 σ_r 을 구하고, Subcritical 상태의 경우 유동장이 정상 상태에 도달한 후, 주 유동속도의 최대 ±10% 크기의 난수(random number)를 전체 유동장에 발생시켜서 양력계수의 감쇠 과정을 통해 σ_r 을 구하였다. 이미 많은 연구가 수행된 원형 실린더와 정방형 실린더의 Re_을 계산하여 비교하였다. Yoon et al.[7]의 정방형 실린더 계산 값은 $Re_c = 45$ 이고, 본 연구 계산값은 $Re_c = 44.7$ 로 잘 일치한다. 그리고 Park et al.[1]의 원형 실린더 계산값은 Re_c = 47이고, 본 연구 계산 값은 $Re_c = 46.7$ 로 잘 일치함을 알 수 있다. 앞선 Re = 40에서의 계산에서 r/D의 변화에 따라 항력계수, 압력계수, 유 선을 구하여 유동 특성의 차이를 알 수 있었다. 이러한 유동 특성의 차이는 정상 상태에서 Re가 증가함에 따라 유동 불 안정성에 영향을 미치게 된다. 따라서 r/D의 변화에 따라 유 동 불안정성은 달라지고, Re, 가 달라질 수 있다.

 Fig. 7은 r/D의 변화에 따른 Re_c의 변화를 나타낸 것이

 다. 정방형 실린더 보다 원형 실린더의 Re_c가 더 높으므로

Fig. 8 Time averaged drag coefficient at Re = 50

Fig. 9 RMS (Root Mean Square) of lift coefficient at Re = 50

Fig. 10 Strouhal number at Re = 50

r/D를 증가시키면 Re_c도 비례하여 증가할 것으로 추측되었 다. 하지만, r/D가 0부터 커짐에 따라 Re_c는 점점 증가하다 가 r/D=0.25에서 최대값을 가지고, 이후 다시 감소하는 경 향을 볼 수 있었다. 즉, r/D=0.25에서 가장 안정적인 유동 특성을 보였다.

4.3 비정상 상태 유동 특성

Re가 증가하여 임계 Re를 초과하면 정상 상태의 유동장 이 불안정해지고 비정상 상태로 천이하며, 와류가 실런더로부 터 주기적으로 떨어져 나가는 와흘림 현상이 발생한다. Re = 50,150에서 계산한 결과 모든 r/D에 대해 비정상 상

Fig. 11 Time averaged drag coefficient at $Re=150\,$

Fig. 12 RMS (Root Mean Square) of lift coefficient at Re = 150

Fig. 13 Strouhal number at Re = 150

태가 되었고, 시간에 따른 C_D 와 C_L 은 주기적인 사인과 형 상을 가졌다. 따라서 C_D 는 시간에 대한 평균값을 계산하고 C_L 은 RMS (Root mean Square)값을 계산하여 r/D 변화에 따 른 유동 특성을 비교하였다. Strouhal 수(*St*)는 유동장이 충분 히 수렴된 후 C_L 의 데이터를 토대로 FFT를 사용하여 계산하 였다. Fig. 8은 Re = 50에서 시간 평균된 항력계수($\overline{C_D}$)를 Fig. 9는 양력계수의 RMS ($\overline{C_L}$, rms)를 그리고 Fig. 10은 *St* 를 각각 나타낸다. Fig. 8-10을 보면, $\overline{C_D}$ 는 r/D가 커짐에 따 라 줄어드는 것을 볼 수 있다. Re = 50은 비정상 상태이지 만, Re_c 근처의 유동이므로 정상 상태와 유사하게 $\overline{C_D}$ 가 선 형적으로 감소하는 것을 볼 수 있다. $\overline{C_{L,rms}}$ 는 r/D가 커짐 에 따라 줄어들다가 r/D=0.25에서 최소값을 보이고 다시 증가하는 것을 볼 수 있다. 4.2절에 따르면 Re_c 는 r/D=0.25일 때 $(Re_c=47.3)$ 가장 크다. 그러므로 Re=50일 때 Re_c 에 가장 가까운 유동은 r/D=0.25인 경 우이다. 따라서 r/D=0.25일 때 다른 경우보다 불안정성이 작고, 낮은 $\overline{C_{L,rms}}$ 를 보인다고 할 수 있다. 이러한 특성은 Fig. 9 $(\overline{C_{L,rms}}$ 의 변화)와 Fig. 7 (Re_c) 의 변화)이 서로 상하로 대칭인 형태를 통해 확인할 수 있다. 한편, $St \leftarrow r/D$ 가 커짐 에 따라 증가하는 것을 볼 수 있다.

 Fig.
 11-13는
 Re = 150에서의
 결과이다.
 $\overline{C_D}$ 는

 r/D = 0.3125에서 최소값을 가졌으며,
 $\overline{C_D}$ 의 변화가
 Re=50

 과는
 달리
 비선형적이라는
 것을 알 수 있다.
 $\overline{C_{L,rms}}$ 는

 r/D = 0.0625에서 최소값을 나타냈다.
 그리고
 St는 여전히

 단순
 증가하는
 것을 볼 수 있다.
 항력을 압력과 전단력에 의

 한
 힘으로
 나누어 각각 계산한 결과, 전체 항력에서 압력이

 차지하는
 비율은 약 79-97%로 계산되었고, 전체 항력
 중 압

 력의
 영향이 전단력
 보다
 더 큰 것을 알 수 있다.

 택에
 대한 해석이
 더 필요하다고 생각된다.

Fig. 14는 r/D의 변화에 따른 시간 평균된 유동장의 압력 계수(Cp)를 나타낸다. 정상 상태인 Re = 40의 결과와 유사 한 경향을 보이는 것을 알 수 있다. Re = 40의 결과와 마찬 가지로 r/D = 0.0이고 θ 가 약 40° 이하로 작을 때에는 C_P 의 변화가 아주 작다가, $\theta = 45^{\circ}$ (모서리)에서 C_p 가 급격히 낮 아지는 것을 볼 수 있다. 하지만 r/D를 증가시키면 그 변화 가 완만해짐을 볼 수 있다. 또한 r/D 가 커짐에 따라 최소값 이 나타나는 각도가 커져 우측으로 이동하고, 그 최소값은 증 가하는 것을 볼 수 있다. 앞서 언급한 바와 같이 항력 계산에 있어서 $0^{\circ} \le \theta \le 45^{\circ}$ 와 $135^{\circ} \le \theta \le 180^{\circ}$ 구간의 압력이 중요하다. $0^{\circ} \le \theta \le 45^{\circ}$ 구간에서는 Re = 40일 때와 유사 하게 r/D=0.5인 경우에 가장 낮은 $\overline{C_p}$ 를 보였다. 하지만 $135^{\circ} \le \theta \le 180^{\circ}$ 구간에서는 Re = 40일 때와 달리 r/D=0.5인 경우에 다른 r/D보다 낮은 $\overline{C_p}$ 를 보였다. 따라 서 실린더의 전방과 후방의 압력 차이는 r/D=0.5에서 최소 가 되지 않았고 그로 인해 $\overline{C_{D}}$ 또한 최소가 되지 않았다.

비정상 상태에서 Re = 50에서 $150 \circ z$ 증가시켜 계산한 결과 $St \leftarrow Re$ 가 증가하여도 r/D가 증가하면 여전히 단순 증가하였다. 그리고 $\overline{C_D}$ 와 $\overline{C_{L,rms}}$ 의 최소값이 나타나는 $r/D \leftarrow Re$ 의 변화에 따라 고정되어 있지 않고 달라지는 특 성을 보였다. $\overline{C_D}$ 와 $\overline{C_{L,rms}}$ 의 변화를 고려하였을 때 실린더

Fig. 14 Time averaged wall pressure coefficient at Re = 150

가 받는 유체력은 *r*/*D*의 변화에 큰 영향을 받는 것으로 판 단된다.

5.결 론

본 연구에서는 교량, 고층 건물, 열전달 원형 튜브 등과 같 은 실린더 형태의 구조물을 지나는 유동의 특성에 대하여 연 구를 수행하였다. 특히 실린더 단면의 형태에 따른 유체력의 변화와 유동 불안정성의 변화에 주목하여 2차원 수치 해석적 연구를 수행하였다.

정방형 실린더 모서리의 곡률반경 r을 변화 시켜가며 연 구한 결과, Re = 40일 때 r/D가 증가할수록 C_D 가 낮아지 는 결과는 얻었다. 항력의 크기는 압력에 의한 힘의 영향이 마찰에 의한 영향보다 훨씬 크다. 따라서 C_P 의 분포를 통해 r/D 증가에 따른 C_D 의 감소를 확인하였다. 각 r/D에 대하 여 임계 Re를 구한 결과 r/D가 0.0부터 증가 할수록 임계 Re는 증가하였고, r/D=0.25에서 최대 임계 Re 값을 가 졌고 이후 다시 감소하였다. 즉, r/D=0.25에서 가장 안정 적인 유동 특성을 보였다.

Re = 50일 때 모든 r/D 에 대하여 유동은 비정상 상태가 되었다. 하지만 $\overline{C_D}$ 는 정상 상태와 유사하게 r/D의 증가에 따라 감소하였다. 또한 $\overline{C_{L,rms}}$ 는 r/D=0.25에서 최소값을 나타냈다. 임계 Re 근처의 비정상 상태 유동은 정상 상태의 유동 특성이 많이 남아 있는 것을 알 수 있었다. 하지만, Re가 증가하여 Re = 150일 때에는 정상 상태와 다르게 $\overline{C_D}$ 의 변화가 비선형적으로 나타났으며, $\overline{C_D}$ 는r/D=0.3125에서, $\overline{C_{L,rms}}$ 는 r/D=0.0625에서 최소값을

나타냈다. 이러한 $\overline{C_D}$ 와 $\overline{C_{L,rms}}$ 의 변화를 고려하였을 때 실 린더가 받는 유체력은 r/D의 변화에 영향을 많이 받는 것으 로 판단된다. 그리고 $\overline{C_D}$ 와 $\overline{C_{L,rms}}$ 의 최소값이 나타나는 r/D는 Re의 변화에 따라 고정되어 있지 않고 변하는 특성 을 보였다.

후 기

이 논문은 인하대학교의 지원과 2012년도 정부(미래창조과 학부)의 재원으로 한국연구재단의 지원을 받아 수행된 기초연 구사업임(No. 2012R1A2A2A01013019).

References

- 1998, Park, J., Kwon, K. and Choi, H., "Numerical simulations of flow past a circular cylinder at Reynolds numbers up to 160," *KSME Int. J.*, Vol.12, pp.1200-1205.
- [2] 1984, Bearman, P.W., Graham, J.M.R., Obasaju, E.D. and Drossopoulos, G.M., "The influence of corner radius on the forces experienced by cylindrical bluff bodies in oscillatory flow," *Appl. Ocean. Res.*, Vol.6, pp.83-89.
- [3] 2003, Dalton, C. and Zheng, W., "Numerical solutions of a viscous uniform approach flow past square and diamond cylinders," *J. Fluids Struct.*, Vol.18, pp.455-465.
- [4] 2004, Kim, D.H., Yang, K.S. and Senda, M., "Large eddy simulation of turbulent flow past a square cylinder confined in channel," *Comput. Fluids.*, Vol.33, pp.81-96.
- [5] 1986, Braza, M., Chassaing, P. and Ha, M.H., "Numerical study and physical analysis of the pressure and velocity fields in the near wake of a circular cylinder," *J. Fluid Mech.*, Vol.165, pp.79-130.
- [6] 1998, Sohankar, A., Norberg, C. and Davidson, L., "Low-Reynolds number flow around a square cylinder at incidence: study of blockage, onset of vortex shedding and outlet boundary condition," *Int. J. Numer. Methods. Fluids.*,

Vol.26, pp.39-56.

- [7] 2010, Yoon, D.H., Yang, K.S. and Choi, C.B., "Flow past a square cylinder with an angle of incidence," *Phys. Fluids.*, Vol.22, pp.043603-1-043603-12.
- [8] 2009, Lee, K., Yang, K.S. and Yoon, D.H., "Flow-induced forces on two circular cylinders in proximity," *Comput. Fluids.*, Vol.38, pp.111-120.
- [9] 2009, Lee, K. and Yang, K.S., "Flow patterns past two circular cylinders in proximity," *Comput. Fluids.*, Vol.38, pp.778-788.
- [10] 2001, Kim, J., Kim, D. and Choi, H., "An Immersed-Boundary Finite-Volume Method for simulations of flow in complex geometries," *J. Comput. Phys.*, Vol.171, pp.132-150.
- [11] 1985, Kim, J. and Moin, P., "Application of a fractional step method to incompressible Navier-Stokes equations," J. Comput. Phys., Vol.59, pp.308-323.
- [12] 2006, Yang, J. and Balaras, E., "An embedded-boundary formulation for large-eddy simulation of turbulent flows interacting with moving boundaries," *J. Comput. Phys.*, Vol.215, pp.12-40.
- [13] 1996, Saiki, E.M. and Biringen, S., "Numerical simulation of a cylinder in uniform flow: application of a virtual boundary method," *J. Comput. Phys.*, Vol.123, pp.450-465.
- [14] 2003, Kang, S.M., "Characteristics of flow over two circular cylinders in a side-by-side arrangement at low Reynolds numbers," *Phys. Fluids.*, Vol.15, pp.2486-2498.
- [15] 1994, Schumm, M., Berger, E. and Monkewitz, P.A., "Self-excited oscillations in the wake of two-dimensional bluff bodies and their control," *J. Fluid Mech.*, Vol.271, pp.17-53.
- [16] 1971, Stuart, J.T., "Nonlinear stability theory," Annu. Rev. Fluid Mech., Vol.3, pp.347-370.
- [17] 1994, Park, D.S., "Theoretical analysis of feed back control of Karman vortex shedding at slightly supercritical Reynolds numbers," *Eur. J. Mech. B-Fluids.*, Vol.13 pp.387-399.