DOI QR코드

DOI QR Code

Biomimetic Preparation of Boron Nitride /PMMA Composite

생체모방기술을 이용한 Boron Nitride /PMMA 복합체 제조

  • Nam, Kyung Mok (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Lee, Yoon Joo (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Bo Yeon (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Woo Teck (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Soo Ryong (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Shin, Dong Geun (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young Hee (Energy Efficient Material Team, Korea Institute of Ceramic Engineering and Technology)
  • 남경목 (한국세라믹기술원 에너지효율소재센터) ;
  • 이윤주 (한국세라믹기술원 에너지효율소재센터) ;
  • 김보연 (한국세라믹기술원 에너지효율소재센터) ;
  • 권우택 (한국세라믹기술원 에너지효율소재센터) ;
  • 김수룡 (한국세라믹기술원 에너지효율소재센터) ;
  • 신동근 (한국세라믹기술원 에너지효율소재센터) ;
  • 김영희 (한국세라믹기술원 에너지효율소재센터)
  • Received : 2014.02.10
  • Accepted : 2014.03.10
  • Published : 2014.03.31

Abstract

Nacre is an organic-inorganic composite material; it is composed of $CaCO_3$ platelet and protein. The microstructure of nacre is a matrix that is similar to bricks and mortar. Technology inspired by nature is called biomimetic technology. In this study, to make high thermal conducting ceramic composite materials using biomimetic technology, a porous green body was prepared with BN platelets. PMMA was infiltrated into the porous green body to make a composite. The microstructure of the composite was observed with FESEM, and the thermal properties were measured. The thermal conductivity of the prepared organic-inorganic composite was 4.19 $W/m{\cdot}K$.

Keywords

References

  1. A. M. Belcher, X. H. Wu, R. J. Christensen, P. K. Hansma, G. D. Stucky, and D. E. Morse, "Control of Crystal Phase Switching and Orientation by Soluble Mollusc-shell Proteins," Nature, 381 [6577] 56-8 (1996). https://doi.org/10.1038/381056a0
  2. M. E. Launey, E. Munch, D. H. Alsem, H. B. Barth, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Designing Highly Toughened Hybrid Composites through Nature," Acta Mater., 57 [10] 2919-32 (2009). https://doi.org/10.1016/j.actamat.2009.03.003
  3. E. Munch, M. E. Launey, D. H. Alsem, E. Saiz, A. P. Tomsia, and R. O. Ritchie, "Tough, Bio-Inspired Hybrid Materials," Science, 322 [5907] 1516-20 (2008). https://doi.org/10.1126/science.1164865
  4. L. J. Bonderer, A. R. Studart, and L. J. Gauckler, "Bioinspired Design and Assembly of Platelet Reinforced Polymer Films," Science, 319 [5866] 1069-73 (2008). https://doi.org/10.1126/science.1148726
  5. A. Chandra, L. S. Turng, K. Li, and H. X. Huang, "Fracture Behavior and Optical Properties of Melt Compounded Semi-transparent Polycarbonate(PC)/alumina Nanocomposites," Composites, Part A, 42 [12] 1903-09 (2011). https://doi.org/10.1016/j.compositesa.2011.08.015
  6. S. Zhao, L. S. Schadler, R. Duncan, H. Hillborg, and T. Auletta, "Mechanisms Leading to Improved Mechanical Performance in Nanoscale Alumina Filled Epoxy," Compos. Sci. Tech., 68 [14] 2965-75 (2008). https://doi.org/10.1016/j.compscitech.2008.01.009
  7. H. Liu, H. Ye, T. Lin, and T. Zhou, "Synthesis and Characterization of PMMA/$Al_2O_3$ Composite Particles by in Situ Emulsion Polymerization," Particuology, 6 [2] 207-13 (2008). https://doi.org/10.1016/j.partic.2008.01.003
  8. K. M. Nam, Y. J. Lee, W. T. Kwon, S. R. Kim, H. M. Lim, H. S. Kim, and Y. H. Kim, "Preparation of $Al_2O_3$ Platelet/ PMMA Composite and Its Characterization(in Korean)," J. Kor. Ceram. Soc., 49 [5] 438-41 (2012). https://doi.org/10.4191/kcers.2012.49.5.438
  9. J. Hong and S. E. Shim, "Trends in Development of Thermally Conductive Polymer Composites," Appl. Chem. Eng., 21 [2] 115-28 (2010).
  10. W. Zhou, S. Qi, C. Tu, H. Zhao, C. Wang, and J. Kou, "Effect of the Particle Size of $Al_2O_3$ on the Properties of Filled Heat-conductive Silicone Rubber," J. Appl. Polym. Sci., 104 [2] 1312-18 (2007). https://doi.org/10.1002/app.25789
  11. K. Wattanakul, H. Manuspiya, and N. Yanumet, "Effective Surface Treatments for Enhancing the Thermal Conductivity of BN-Filled Epoxy Composite," J. Appl. Polym. Sci., 119 [6] 3234-43 (2011). https://doi.org/10.1002/app.32889

Cited by

  1. Effects of Duty Cycle and Pulse Frequency on the Microstructure and Mechanical Properties of TiAlN Coatings vol.51, pp.5, 2014, https://doi.org/10.4191/kcers.2014.51.5.447