DOI QR코드

DOI QR Code

고강도 알칼리 활성 슬래그 모르타르의 자기수축 특성

Autogenous Shrinkage Properties of High Strength Alkali Activated Slag Mortar

  • 오상혁 (성균관대학교 건설환경시스템공학과) ;
  • 홍성현 (성균관대학교 건설환경시스템공학과) ;
  • 이광명 (성균관대학교 건설환경시스템공학과)
  • Oh, Sang-Hyuk (Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Hong, Sung-Hyun (Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University) ;
  • Lee, Kwang-Myong (Department of Civil, Architectural and Environmental System Engineering, Sungkyunkwan University)
  • 투고 : 2014.03.04
  • 심사 : 2014.03.25
  • 발행 : 2014.03.30

초록

최근 산업부산물의 재활용과 지구온난화와 같은 환경오염 문제 해결방안으로 알칼리 활성 슬래그(AAS) 콘크리트에 관한 많은 연구가 이루어지고 있다. AAS 콘크리트는 고강도 발현이 가능하며 내구성 또한 우수한 것으로 알려져 있다. 그러나 빠른 알칼리반응으로 인하여 매우 큰 수축이 발생함에도 불구하고 고강도 AAS 콘크리트의 자기수축 거동에 대한 연구는 매우 부족한 실정이다. 따라서, 본 연구에서는 물-결합재비가 0.40, 0.45, 0.50이고 알칼리 활성화제 첨가량이 $Na_2O$=5, 6, 7%인 AAS 모르타르 배합을 실시하여 굳지 않은 모르타르 특성(플로우, 응결시간)과 압축강도, 자기수축을 측정하였다. 실험 결과, 일반 콘크리트에 비해 매우 큰 자기수축이 발생하였고 W/B가 낮고 알칼리 활성화제 첨가량이 많을수록 자기 수축량이 증가하는 것을 알 수 있었다. 따라서 고강도 알칼리 활성 슬래그 콘크리트의 자기 수축을 줄이기 위해서는 수축 저감제의 사용 및 적절한 양생이 필요하다고 판단된다.

Recently, lots of researches on alkali-activated slag (AAS) concrete have been carried out to resolve the environmental issues such as recycling by-products and global warming. AAS concrete would have high strength and high level of durability. On the other hand, it is known that large amount of shrinkage occurred in AAS concrete due to rapid alkaline reaction in the early age, and however, the related studies about autogenous shrinkage of high strength AAS mortar are relatively rare. In this study, fresh mortar properties such as flow and setting time, compressive strength and autogenous shrinkage of AAS mortar with W/B=0.40 to 0.50, were measured. AAS mortar was activated with sodium silicate (Ms=1.0) with 5, 6 and 7 % of $Na_2O$. Test results revealed that AAS morar shows larger autogenous shrinkage than OPC mortar and the lower W/B of AAS mortar, the greater autogenous shrinkage. Therefore, the application of appropriate curing and the use of shrinkage reduction admixture would be needed to reduce autogenous shrinkage of AAS mortar.

키워드

참고문헌

  1. Aydin, S. and Baradan, B. (2014). Effect of activator type and content on properties of alkali-activated slag mortars, Composites Part B: Engineering, 57, 166-172. https://doi.org/10.1016/j.compositesb.2013.10.001
  2. Atis, C.D., Bilim, C., Celik, O., and Karahan O. (2009). Influence of activator on the strength and drying shrinkage of alkali-activated slag mortar, Construction and Building Materials, 23, 548-555. https://doi.org/10.1016/j.conbuildmat.2007.10.011
  3. Brough, A.R. and Atkinson, A. (2000). Sodium silicate-based, alkali-activated slag mortars. Part I. Strength, hydration and microsturcture, Cement and Concrete Research, 32, 865-879.
  4. Chi, M.-C., Chang J.-J., and Huang, R. (2012). Strength and drying shrinkage of alkali-activated slag paste and mortar, Advance in Civil Engineering.
  5. Collins, F.G. and Sanjayan, J.G. (1999). Workability and mechanical properties of alklai activated slag concrete, Cement and Concrete Research, 29, 455-458. https://doi.org/10.1016/S0008-8846(98)00236-1
  6. Damtoft, J.S., Lukasik, J., Herfort, D., Sorrentino, D., and Gartner, E.M. (2008). Sustainable development and climate change initiatives, Cement and Concrete Research, 38(2), 115-127. https://doi.org/10.1016/j.cemconres.2007.09.008
  7. KCA (Korea Cement Association) (2011). 2010 Cement of Statistical Annual Report in Korea, 13. [in Korean]
  8. Lee, K.M., Kwon, K.H., Lee, H.K., Lee, S.H., and Kim, G.Y. (2004). Characteristics of autogenous shrinkage for concrete containing blast-furnace slag, Journal of the Korea Concrete Institute, 16(5), 621-626. https://doi.org/10.4334/JKCI.2004.16.5.621
  9. Lim, S.N. and Wee, T.H. (2000). Autogenous Shrinkage of ground-granulated blast furnace slag concrete, ACI Materials Journal, 97(5), 587-592.
  10. Melo Neto, A. A., Cincotto, M.A., and Repette, W. (2008). Drying and autogenous shrinkage of pastes and mortars with activated slag cement, Cement and Concrete Research, 38, 565-574. https://doi.org/10.1016/j.cemconres.2007.11.002
  11. Oh, S.H., Kim, D.W., and Lee, K.M. (2012). Early age properties of alkali activated slag mortar according to water/binder ratio, Journal of the Korean Recycled Construction Resource Institute, 7(2), 63-69 [in Korean].
  12. Palacios, M. and Puertas, F. (2007). Effect of shrinkagereducing admixtures on the properties of alkali-activated slag mortars and pastes, Cement and Concrete Research, 37, 691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  13. Palacios, M. and Puertas, F. (2003). Effect of superplasticizer and shrinkage-reducing admixtures on alkali-activated slag pastes and mortars, Cement and Concrete Research, 35, 1358-1367.
  14. Park, S.G., Kwon, S.J., Kim, Y.M., and Lee, S.S. (2013). Reaction properties of non-cement mortar using ground granulated blast furnace slag, Journal of the Korea Contents Association, 13(9), 392-399 [in Korean]. https://doi.org/10.5392/JKCA.2013.13.09.392
  15. Shi, C., Krivenko, P.V., and Roy, D. (2006). Alklai-activated cement and concrete, Taylor and Franis, 376.
  16. Wang S., Scrivener K.I., and Pratt P.L. (1994). Factors affecting the strength of alkali-activated slag, Cement and Concrete Research, 24(6), 1033-1043. https://doi.org/10.1016/0008-8846(94)90026-4
  17. Yang, K.H., Cho, A.R., and Song, J.K. (2013). Underestrained Short-Term Shrinkage of Calcium Hydroxide-Based Alklai-Activated Slag Concrete, ACI Materials Journal, 110(2), 127-136.

피인용 문헌

  1. Flexural and Shear Behaviors of Reinforced Alkali-Activated Slag Concrete Beams vol.2017, 2017, https://doi.org/10.1155/2017/5294290
  2. Shear Behavior of RC Beams Using Alkali Activated Slag Concrete vol.3, pp.1, 2015, https://doi.org/10.14190/JRCR.2015.3.1.058
  3. Evaluation of Flexural Behavior of Reinforced Concrete Beams Using Alkali Activated Slag Concrete vol.27, pp.3, 2015, https://doi.org/10.4334/JKCI.2015.27.3.311
  4. Basic Study on Development of Ultra-high Strength Grout for Offshore Wind Turbines vol.15, pp.1, 2015, https://doi.org/10.12813/kieae.2015.15.1.155
  5. Compressive Strength Properties of Steam-cured High Volume GGBFS Cement Concrete vol.3, pp.1, 2015, https://doi.org/10.14190/JRCR.2015.3.1.001
  6. Long-Term Durability Estimation of Cementless Concrete Based on Alkali Activated Slag vol.4, pp.2, 2016, https://doi.org/10.14190/JRCR.2016.4.2.149