DOI QR코드

DOI QR Code

Methods for Swing Recognition and Shuttle Cock's Trajectory Calculation in a Tangible Badminton Game

체감형 배드민턴 게임을 위한 스윙 인식과 셔틀콕 궤적 계산 방법

  • Kim, Sangchul (Dept. of Computer Science and Engineering, Hankuk University of Foreign Studies)
  • 김상철 (한국외국어대학교 컴퓨터공학과)
  • Received : 2014.03.24
  • Accepted : 2014.04.08
  • Published : 2014.04.20

Abstract

Recently there have been many interests on tangible sport games that can recognize the motions of players. In this paper, we propose essential technologies required for tangible games, which are methods for swing motion recognition and the calculation of shuttle cock's trajectory. When a user carries out a badminton swing while holding a smartphone with his hand, the motion signal generated by smartphone-embedded acceleration sensors is transformed into a feature vector through a Daubechies filter, and then its swing type is recognized using a k-NN based method. The method for swing motion presented herein provides an advantage in a way that a player can enjoy tangible games without purchasing a commercial motion controller. Since a badminton shuttle cock has a particular flight trajectory due to the nature of its shape, it is not easy to calculate the trajectory of the shuttle cock using simple physics rules about force and velocity. In this paper, we propose a method for calculating the flight trajectory of a badminton shuttle cock in which the wind effect is considered.

최근 다양한 모션 센서를 이용해서 실제 사용자의 동작을 인식하는 체감형 스포츠 게임에 대한 관심이 높다. 본 논문에서는 체감형 게임 플레이를 지원하는 배드민턴 게임의 구현에 필요한 핵심 요소 기술인 스윙 모션의 인식과 셔틀콕의 궤적 계산 방법을 제안한다. 사용자가 스마트폰을 손에 쥐고 배드민턴 스윙을 하면, 스마트폰에 내장된 가속도 센서가 발생시키는 모션신호를 다우비시 필터를 이용해서 특징벡터로 변환하고, 이를 k-NN 기반의 인식을 통해서 스윙 타입을 알아낸다. 본 논문에서 제안한 스윙 모션 인식 방법을 이용하면, 상용 모션 콘트롤러를 구입하지 않아도 체감형 배드민턴 게임을 즐길 수 있는 장점이 있다. 배드민턴 셔틀콕은 그 모양의 특징으로 인해 독특한 비행 궤적을 가지고 있기에, 단순한 힘과 속도에 관한 물리 법칙으로는 그 궤적을 표현하기 쉽지 않다. 본 논문에서 우리는 바람의 영향을 고려한 배드민턴 셔틀콕의 비행 궤적 계산 방법을 제안한다.

Keywords

References

  1. http://www.nintendo.com/wii.
  2. http://www.xbox.com/en-US/.
  3. Y. Kurihara, et al., "Estimation of Walking Exercise Intensity Using 3-D Acceleration Sensor", IEEE Transactions on Systems, Man, and Cybernetics, Vol. 42, No. 4, pp. 495-500, 2012, https://doi.org/10.1109/TSMCC.2011.2130522
  4. Sangchul Kim, Zhong Yong Che, "A Method for Tennis Swing Recognition Using Accelerator Sensors on a Smartphone", Journal of Korea Game Society, 13(2), pp. 29-38, 2013. https://doi.org/10.7583/JKGS.2013.13.2.29
  5. k-NN Algorithm, rg/wiki/K-nearest_neighbors_algorithm.
  6. Ling-Ming Chen, Yi-Hsiang Pan, Yung-Jen Chen, "A Study of Shuttlecock's Trajectory in Badminton", Journal of Sports Science and Medicine, Vol. 8, pp. 657-662, 2009.
  7. Y. Ohgi, T. Baba, "Uncock Timing in Driver Swing Motion", The Impact of Technology on Sport. ASTA, pp. 349-354, 2005.
  8. D. James, T. Gibson, W. Uroda, "Dynamics of a swing: A study of classical Japanese swordsmanship using accelerometers", The Impact of Technology on Sport. ASTA, pp. 355-360, 2005.
  9. Amin Ahmadi, et. al., "Investigating the Translational and Rotational Motion of the Swing Using Accelerometers for Athlete Skill Assessment", Proc. of IEEE Sensors, pp. 980-983, 2006.
  10. Damien Connaghan, et. al., "Multi-Sensor Classification of Tennis Strokes", Proc. of IEEE Sensors, pp. 28-31, 2011.
  11. Antoon Th. M. Willemsen, Fedde Bloemhof, Herman B. K. Boom, "Automatic Stance-Swing Phase Detection from Accelerometer Data for Personal Nerve Stimulation", IEEE Trans. on Biomedical Engineering, Vol. 37, No. 12, pp. 1201-1208, 1990. https://doi.org/10.1109/10.64463
  12. Jun Yang, "Toward Physical Activity Diary: Motion Recognition Using Simple Acceleration Features with Mobile Phones", Proceedings of the 1st international workshop on Interactive multimedia for consumer electronics, pp. 1-10, 2009.
  13. Julien Le Personnic, et. al, "Flight Trajectory Simulation of Badminton Shuttlecocks", Proceedings of 5th Asia-Pacific Congress on Sports Technology (APCST), pp. 344-349, 2011.
  14. Sven Kratz, Michael Rohs, Georg Essl, "Combining Acceleration and Gyroscope Data for Motion Gesture Recognition Using Classifiers with Dimensionality Constraints", Proceedings of the 2013 International Conference on Intelligent User Interfaces, pp. 173-178, 2013.
  15. A. Khare, U. S. Tiwary, "Daubechies Complex Wavelet Transform Based Moving Object Tracking", IEEE Symposium on Computational Intelligence in Image and Signal Processing (CIISP), pp. 36-40, 2007.
  16. Elif Derya Ubeyil., "Combined Neural Network Model Employing Wavelet Coefficients for ECG Signals Classification", Digital Signal Processing, Vol 19, pp. 297-308, 2009. https://doi.org/10.1016/j.dsp.2008.07.004
  17. B. T. Tan, et. al., "The Use of Wavelet Transforms in Phoneme Recognition", Proceeding on Fourth International Conference on Spoken Language, pp. 2431-2434, 1996.
  18. Eui-Young Kim, Chang-Hoon Park, Dae-Geun Kim, "A Study on Effectiveness and Preference of Tangible Fitness Game", Journal of Korea Game Society, 12(1), pp. 79-90, 2012. https://doi.org/10.7583/JKGS.2012.12.1.067