DOI QR코드

DOI QR Code

푸른곰팡이 대치배양에 의한 꽃송이버섯 균사 생장 특성 및 계통간 교잡균주의 rDNA 분석

Characteristic of mycelial growth of cauliflower mushroom (Sparassis latifolia) using replacement culture with Trichoderma and rDNA analysis in genealogy of crossbreeding strain

  • 오득실 (전라남도산림자원연구소) ;
  • 김현석 (전라남도산림자원연구소) ;
  • 김영 (국립산림품종관리센터) ;
  • 위안진 (전라남도산림자원연구소) ;
  • 윤병선 (전라남도산림자원연구소) ;
  • 박화식 (전라남도산림자원연구소) ;
  • 박형호 (전라남도산림자원연구소) ;
  • 왕승진 (국립산림품종관리센터)
  • 투고 : 2013.12.19
  • 심사 : 2014.04.02
  • 발행 : 2014.03.31

초록

${\beta}$-glucan 함량이 높다고 알려진 꽃송이버섯의 농가재배 활성화를 위하여 푸른곰팡이 내성균주를 선발하고자 푸른곰팡이 대치배양에 의한 꽃송이버섯 균사생장 특성을 확인하였으며, 또한 생장이 우수한 신품종을 개발하고자 교잡육종 균주에 대한 유전 다양성을 분석하였다. 먼저 푸른곰팡이 대치배양에 의한 꽃송이버섯 균사의 생장 특성을 확인한 결과, 6951 (T. viride) 균주에서는 대치선을 형성한 후 별다른 변화를 보이지 않았고, 6952 (T. spp.) 균주에서는 대치선을 형성한 다음 보다 많은 포자를 형성하는 것이 관찰되었다. 그러나 6426 (T. harzianum) 균주에서는 꽃송이버섯 균사가 생장하고 있던 부분까지 모두 덮어버리는 것이 확인되었다. 그 중 특이하게도 구례에서 채집선발한 균주인 JF02-06 균주에서는 다른 균주에 비해 푸른곰팡이 포자가 형성되지 않는 것을 확인되어 다소 푸른곰팡이에 대한 저항성을 갖는 것으로 사료되었다. 전남 산림자원연구소에서 보유 중인 균주 중 생장 및 자실체 발생이 우수한 모균주를 선발하여 교잡을 실시하여 생장특성을 조사한 결과, 미송톱밥배지에서 JF02-47, 49, 50 균주의 균사생장량이 우수한 것으로 확인되었다. 이러한 교잡육종 균주의 유전 다양성을 분석하기 위하여 ITS1, 5.8S와 ITS4 영역에 대한 염기서열을 분석한 결과 Genebank에 등록된 다른 꽃송이버섯 균주와 높은 유의성을 갖는 것으로 확인되었다. 이러한 꽃송이버섯의 포자 및 균사를 현미경으로 관찰하여 생장 특성을 확인한 결과, 포자의 크기는 장경 $6{\mu}m$, 단경 $5{\mu}m$의 물방울 모양으로 확인되었고, 균사에서 3가지 형태의 꺽쇠가 관찰되었다. 균사의 폭은 $3{\mu}m$이며 꽃송이버섯 균사의 특징으로는 약 50% 정도 꺽쇠에서 균사가 뻗어나가는 특성을 갖고 있음이 확인되었다. 균사의 생장 속도는 $0.507{\mu}m/min$이며, 2차 균사는 $0.082{\mu}m/min$의 속도로 생장하다가 모균사와 평행을 이루는 시점에서는 모균사의 생장속도와 유사한 속도로 생장하였다. 꺽쇠발생은 약 5시간 동안 균사 내부 전해질의 이동이 관찰된 후 작은 꺽쇠를 형성하였다. 약 3시간 후 격막이 형성되기 시작하였으며, 그로부터 2시간 후 최종적으로 완성되었다. 이러한 특성을 갖는 꽃송이버섯의 푸른곰팡이 저항성을 확인하고, 교잡균주의 유전 다양성 및 균사의 생장 특성을 확인하여 꽃송이버섯에 대한 기초적인 이해를 높이고, 더 나아가 버섯산업 발전에 이바지하고자 한다.

Cauliflower mushroom widely known high concent of ${\beta}$-glucan for farm cultivation invigoration verified characteristics of mycelia growth, genetic diversity, resistance to Trichoderma by replacement culture with Trichoderma and growth characteristics of new variety crossbleeding strain. The result of replacement culture with Trichoderma for verification resistance about Trichoderma, 6951 (T. viride) strain did not show special change after formation of confrontation line and 6952 (T. spp.) strain was showed more formation of spore after formation of confrontation line. But 6426 (T. harzianum) strain found to encroach part of growth area of cauliflower mushroom mycelia. Among 10 kinds cauliflower mushroom strain, JF02-06 strain collected by Gurye, found did not spore of Trichoderma and thought to be resistant to Trichoderma. The result of crossbleeding after selected that mother strain good growth and formation of fruit body, verified good mycelia growth at JF02-47, 49 and 50 strain in Korean pine of wood-chip media. The result of gene sequence about ITS1, 5.8S and ITS4 for analysis of genetic diversity at crossbleeding strain, found high significance to other cauliflower mushroom in registered Genebank. The result of growth characteristic of spore and mycelia of cauliflower mushroom by observation microscope, size of spore showed water drop shape to major axis $6{\mu}m$ and minor axis $5{\mu}m$ and clamp showed 3 types in mycelia. The wide of mycelia was $3{\mu}m$. The characteristic of mycelia of cauliflower mushroom found to grow mycelia in clamp at approximately 50%. The growth speed of mycelia was $0.507{\mu}m/min$ and 2nd mycelia grown similar speed to mother mycelia at parallel with mother mycelia after growth speed at $0.082{\mu}m/min$. The formation of clamp made small clamp for 5 hours after shown transfer of electrolyte in mycelia inside. The septum formation started after 3 hours and then finally completed after 2 hours. In this study, strain of cauliflower mushroom verified resistance of Trichoderma, genetic diversity and characteristic of mycelia growth. Therefore, basic knowledge of cauliflower mushroom will improve and further contribute to development of mushroom industry.

키워드

참고문헌

  1. Beach WS. 1937. control of mushroom disease and seed fungi. Penn. Stat coll. Agric. Bull. 351:1-32.
  2. Doyle O, E Morris and K Clancy. 1991. Trichoderma green mould-Update. Irich. Mush. Rev. 3:13-17.
  3. Harada T, Miura NN, Adachi Y, Nakajuma M, Yadomae T andn Ohno N. 2002. Effect of SCG, 1,3-$\beta$-D-glucan from Sparassis crispa on the hematopoietic response in cyclophosphamide induced leukopenic mice. Biol. Pharm. Bull. 25:931-939. https://doi.org/10.1248/bpb.25.931
  4. Healey KW and Harvey JM. 1989. A biological control agent for the mushroom industry. J. Biotechnol. conference. 322-324.
  5. Hong JS. 1980. Nutrition value and medicine efficacy of mushroom. Food Ind. 53:79-84.
  6. Kawade M, Sumiya T, Shimura K and Ito H. 1984. Activation of the reticulo-endothelial system by antitumor polysaccharide from Agaricus blazei iwade. Med. Biol. 109:299-302.
  7. Kawagishi H, Hayashi K, Tokuyama S, Hashimoto N, Kimura T and Dombo M. 2007. Novel bioactive compound from the Sparassis crispa mushroom. Biosci. Biotechnol. Biochem. 71: 1804-1806. https://doi.org/10.1271/bbb.70192
  8. Kim BK, Kwun JY, Park YI and Choi EC. 1992. Antitumor components of the cultured mycelia of Calvatia craniformis. J. Kor. cancer Assoc. 24:57-63.
  9. Kim HH, Lee S, Singh TS, Choi JK, Shin TY and Kim SH. 2012. Sparassis crispa suppresses mast cell-mediated allergic inflammation: Role of calcium, mitogen-activated protein kinase and nuclear factor-KB. Int. J. Mol. Med. 30:344-350. https://doi.org/10.3892/ijmm.2012.1000
  10. Kim SH, Kim HW, Choi OC and Kim BK. 1993. Immunological studies on colluban isolated Collubia confluens. J. Kor. Cancer Assoc. 25:288-298.
  11. Kim SY, Son MH, Ha JU and Lee SC. 2003. Preparation and characterization of fried surimi gel containing king oyster mushroom (Pleurotus eryngii). J. Kor. Soc. food Sci. Nutr. 32: 855-858. https://doi.org/10.3746/jkfn.2003.32.6.855
  12. Kwon AH, Qiu Z, Hashimoto M, Yamamoto K and kimura T. 2009. Effects of medicinal mushroom (Sparassis crispa) on wound healing in streptozotocin-induced diabetic rats. Am. J. Surg. 197:503-509. https://doi.org/10.1016/j.amjsurg.2007.11.021
  13. Lee SS, Kim SK, Lee TS and Lee MW. 1997. Cultivation of oyster mushroom using the garlic peel as an agricultural byproduct. Kor. J. Mycol. 25:268-275.
  14. Lim CW, Kang KK, Yoo YB, Kim BH and Bae SH. 2012. Dietary fiber and $\beta$-glucan contents of Sparassis crispa fruit fermented with Lactobacillus brevis and Monascus pilosus. J. Kor. Soc. Food. Sci. Nutr. 41(12):1740-1746. https://doi.org/10.3746/jkfn.2012.41.12.1740
  15. Oh DS, Park JM, Park H, Ka KH and Chun WJ. 2009. Site characteristics and vegetation structure of the habitate of cauliflower mushroom (Sparassis crispa). Kor. J. Mycol. 37: 33-40. https://doi.org/10.4489/KJM.2009.37.1.033
  16. Oh DS. 2003. Studies on the optimal cultural media and conditions for mycelial growth of Sparassis crispa (wulf.) fr. MS Thesis, Chonnam National University, Gwangju, Korea.
  17. Ohno N, Miura NN, Nakajima M and Yadomae T. 2000. Antitumor 1,3-$\beta$ glucan from cultured fruit body of Sparassis crispa. Biol. Pharm. Bull. 23:866-872. https://doi.org/10.1248/bpb.23.866
  18. Ospina-Giraldo MD, DJ Royse, X Chen and CP Romaine. 1999. Molecular phylogenetic analyses of biological control strains of Trichoderma harzianum and other bio-types of Trichoderma spp. associated with mushroom green mould. Phytopathology. 89:308-313. https://doi.org/10.1094/PHYTO.1999.89.4.308
  19. Park WP, Lee SC Bae SM, Kim JM and Lee MJ. 2001. Effect of enoki mushroom (Flammulina velutipes) addition on the quality of Kimchi during fermentation. J. Kor. Soc. Food Sci. Nutr. 30:210-214.
  20. Ryu J, Lee GJ, Jung GT Na JS and Hwang CJ. 1996. Study on the media development of Pleurotus ostreatus by waste cotton stuff. Kor. J. Mycol. 24:176-179.
  21. Seaby DA. 1987. Further observations on Trichoderma. Mushroom J. 197:147-151.
  22. Sinden J and E Hauser. 1953. Nature and control of three mildew diseases of mushrooms in America. Mushroom Sci. 2:177-180.
  23. Wani BA, Bodha RH, Wani AH. 2010. Ntritional and medicinal importance of mushrooms. J Medicinal Plants Res., 4:2598-2604 https://doi.org/10.5897/JMPR09.565
  24. Wells JM, Sapers GM, Felt WF, Butterfield JE, Jones B, Bouzar H and Miller FC. 1996. Postharvest discoloration of the cultivated mushroom Agaricus bisporus caused by Pseudomonas tolaasii, P. Reactans and P. gingeri. Phytopathology. 86:1098-1104. https://doi.org/10.1094/Phyto-86-1098
  25. Woodward S, Sultan HY, Barrett DK and Pearce RB. 1993. Two new antifungal metabolites produced by Sparassis crispa in culture and in decayed trees. J. Gen. Mirobiol. 139:153-159.
  26. Yamamoto K, Kimura T, Sugitachi A and Matsuura N. 2009. Anti-angiogenic and anti-metastatic effects of $\beta$-1,3-d-glucan purified from Hanabiratake, Sparassis crispa. Biol. Pharm. Bull. 32:259-263. https://doi.org/10.1248/bpb.32.259
  27. Yoshioka Y, Tabeta RH, Saito N and Fukuoka F. 1985. Antitumor polysaccharides from P. ostrestus (Fr.) Quel.: Isolation and structure of a-glucan. Carbohydr. Res. 140:92-100.
  28. Yoshitomi H, Iwaoka E, Kubo M, Shibata M and Gao M. 2011. Beneficial effect of Sparassis crispa on stroke through activation of Akt/eNOS pathway in brain of SHRSP. J. nat. Med. 65:135-141. https://doi.org/10.1007/s11418-010-0475-9