DOI QR코드

DOI QR Code

Performance Evaluation to Develop an Engineering Scale Cathode Processor by Multiphase Numerical Analysis

다상유동 전산모사를 통한 공학 규모의 cathode processor의 성능평가

  • Received : 2013.12.27
  • Accepted : 2014.03.19
  • Published : 2014.03.30

Abstract

Molten salt electrorefining process achieves uranium deposits at cathode using an electrochemical processing of spent nuclear fuel. In order to recover pure uranium from cathode deposit containing about 30wt% salt, the adhered salt should be removed by cathode process (CP). The CP has been regarded as one of the bottle-neck of the pyroprocess as the large amount of uranium is treated in this step and the operation parameters are crucial to determine the final purity of the product. Currently, related research activities are mainly based on experiments consequently it is hard to observe processing variables such as temperature, pressure and salt gas behavior during the operation of the cathode process. Hence, in this study operation procedure of cathode process is numerically described by using appropriate mathematical model. The key parameters of this research are the amount of evaporation at the distillation part, diffusion coefficient of gas phase salt in cathode processor and phase change rate at condensation part. Each of these conditions were composed by Hertz-Langmuir equation, Chapman-Enskog theory, and interphase mass flow application in ANSYS-CFX. And physical properties of salt were taken from the data base in HSC Chemistry. In this study, calculation results on the salt gas behavior and optimal operating condition are discussed. The numerical analysis results could be used to closely understand the physical phenomenon during CP and for further scale up to commercial level.

용융염 전해정련공정은 사용후핵연료로부터 전기화학적인 방법을 통해 음극에서 우라늄을 회수 하는 공정이다. 이 때 우라늄은 약 30wt%의 염을 포함하고 있어 순수한 우라늄을 얻기 위해서는 염을 제거하는 Cathode Process (CP)가 필수적이다. CP는 대량의 우라늄을 처리해야 하므로 파이로공정의 난관중의 하나로 인식되고 있으며, 우라늄의 순도가 최종적으로 결정되는 단계이므로 매우 중요한 공정이다. 현재, 이에 대한 연구는 주로 실험적 방법에 근거 하고 있어 염 제거 공정 중 온도, 압력, 염 가스의 거동을 관찰하기 어렵다. 따라서 본 연구에서는, 공정의 운전 조건에 대해 적합한 수학적 모델을 이용하여 전산모사 해석을 진행하였다. 본 연구는 증류부에서 염 가스의 증류 량, 확산계수에 의해 계산된 장치 내 염 가스의 이동 그리고 응축부에서의 응결속도를 중점적으로 연구하였다. 장치내의 각각의 염 가스 거동을 정의하기 위해 Hertz-Langmuir 관계식, Chapman-Enskog Theory, ANSYS-CFX의 상용 코드를 사용하였다. 그리고 HSC Chemistry에서 염의 물성 값을 이용하여 모델을 구성하였다. 본 연구의 전산모사 해석을 통해 얻은 연구 결과를 이용하여 염 가스의 거동과 장치의 최적 운전조건을 예측하였다. 따라서 본 해석 결과는 CP의 물리적 현상을 깊게 이해하는데 쓰일 뿐 아니라, 공학규모의 CP 장치를 상용규모로 확장하는데 이용 할 수 있다.

Keywords

References

  1. V.A. Volkovich, "Treatment of Molten salt Wastes by Phosphate Precipitation: Removal of Fission Product Elements after Pyrochemical Reprocessing of Spent Nuclear Fuels in Chloride Melts", J. Nucl. Mat., 323, pp.49-56 (2003). https://doi.org/10.1016/j.jnucmat.2003.08.024
  2. Y.I. Chang, "The Integral Fast Reactor", Nucl. Technol., 88 (11), pp.129-138 (1989).
  3. H. Lee, G. Park, K. Kang, J. Hur, J. Kim, D. Ane, Y. Cho, and E. Kim, "Pyroprocessing Technology Development at KAERI", Nucl.Technol., 43(4), pp.317-328 (2011). https://doi.org/10.5516/NET.2011.43.4.317
  4. K. Song, H. Lee, J. Hur, J. Kim, D. Ane, and Y. Cho, "Status of Pyroprocessing Technology Development in KOREA" Nucl. Technol.,42(2), pp.131-144 (2010). https://doi.org/10.5516/NET.2010.42.2.131
  5. A R. Brunsvold, P D. Roach, and B R. Westphal, "Design and Development of a Cathode Processor for Electrometallurgical Treatment of Spent Nuclear Fuel", Pro. of ICONE 8: 8thInternation Conferenceon Nuclear Engineering, April 2-6, USA, Baltimore (2000).
  6. B.R. Westphal, D. Vaden, T.Q. Hua, J.L. Willit, and D.V. Lang, "Recent Developments at the Cathode Processor for Spent Fuel Treatment", American Nuclear Society Fifth Topical Meeting DOE Spent Nuclear/Fuels and Fissile Materials Management, Sep. 17-20, USA, Charleston, South Carolina (2002).
  7. T. Kato, M. Iizuka, T. Inoue, T. Iwai, and Y. Arai, "Distillation of Cadmium from Uranium-Plutonium-Cadmium Alloy", J. Nucl. Mat., 340, pp.259-265 (2005). https://doi.org/10.1016/j.jnucmat.2004.12.002
  8. S. Park, D. Cho, G. Oh, J. Lee, S. Hwang, Y. Kang, H. Lee, E. Kim, and S. Park, "Salt Evaporation Behaviors of Uranium Deposits from an Electrorefiner", J. Radioanal. Nucl. Chem., 283, pp.171-176 (2010). https://doi.org/10.1007/s10967-009-0136-1
  9. K. Park, S. Kwon, S. Park, and J. Kim, "The Evaporation Characteristics of LiCl-KCl Eutectic Salt from Uranium Deposit Using Batch Type Vacuum Distiller with Temperature Slope of Each Zones", J. Radional. Nucl. Cehm., 293, pp. 857-862 (2012). https://doi.org/10.1007/s10967-012-1766-2
  10. G.H. Geiger and D.R. Poirier, Transport Phenomena in Metallurgy, 1st ed., Addison-Wesley, Boston (1973).
  11. G. Bourges, S. Faure, B. Fiers, S. Saintignon, O. Lemoine, D. Cardona-Barrau, and D. Devillard, "Vacuum Distillation of Plutonium Pyrochemical Salts", Procedia Chemistry, 7, pp.731-739 (2012). https://doi.org/10.1016/j.proche.2012.10.111
  12. K. Chatterjee, D. Dollimore, and K S. Alexander, "Calculation of Vapor Pressure Curves for Hydroxy Benzoic Acid Derivatives Using Thermogravimetry", Thermochimica Acta, 392-393, pp.107-117 (2002). https://doi.org/10.1016/S0040-6031(02)00091-6
  13. L, L. Wang, T. C. Wallace, SR., F. G. Hampel, and J. H. Steele, "Vacuum Evaporation of KCl-NaCl Salts: Part II. Vaporization-Rate Model and Experimental Results", Metall. Mater. Trans. B, 27B, pp.434-443 (1996).
  14. ANSYS, Inc. CFX-Solver Theory Guide, Release 12.0, (2009).
  15. B. E. Poling J. M. Prausnitz, and J. P. O'Connel., The Properties of Gas and Liquids. 1st ed., McGRAW-HILL, New York (2001).
  16. T. Koyama, K. Uozumi, M. Iizuka, Y. Sakamura, and K. Kinoshita, "Pyrometallurgy Data Book", CRIEPI report, T93033, pp.41 (1995).