DOI QR코드

DOI QR Code

Polyopes lancifolia Extract, a Potent α-Glucosidase Inhibitor, Alleviates Postprandial Hyperglycemia in Diabetic Mice

  • Min, Seong Won (Department of Food Science and Nutrition, Pusan National University) ;
  • Han, Ji Sook (Department of Food Science and Nutrition, Pusan National University)
  • Received : 2014.01.10
  • Accepted : 2014.03.17
  • Published : 2014.03.31

Abstract

This study was designed to investigate the inhibitory effects of Polyopes lancifolia extract (PLE) on ${\alpha}$-glucosidase activity, ${\alpha}$-amylase activitiy, and postprandial hyperglycemia in streptozotocin (STZ)-induced diabetic mice. The results of this study revealed a marked inhibitory effect of PLE on ${\alpha}$-glucosidase and ${\alpha}$-amylase activities. The $IC_{50}s$ of PLE against ${\alpha}$-glucosidase and ${\alpha}$-amylase were 0.20 mg/mL and 0.35 mg/mL, respectively. PLE was a more effective inhibitor of ${\alpha}$-glucosidase and ${\alpha}$-amylase activities than acarbose, the positive control. The postprandial blood glucose levels of STZ-induced diabetic mice were significantly lower in the PLE treated group than in the control group. Moreover, PLE administration was associated with a decreased area under the curve for the glucose response in diabetic mice. These results indicate that PLE may be a potent inhibitor of ${\alpha}$-glucosidase and ${\alpha}$-amylase activities and may suppress postprandial hyperglycemia.

Keywords

References

  1. Corry DB, Tuck ML. 2002. Protection from vascular risk in diabetic hypertension. Curr Hypertens Rep 2: 154-159.
  2. Baron AD. 1998. Postprandial hyperglycemia and $\alpha$-glucosidase inhibitors. Diabetes Res Clin Pract 40: S51-S55. https://doi.org/10.1016/S0168-8227(98)00043-6
  3. UK Prospective Diabetes Study Group. 1998. Intensive bloodglucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). Lancet 352:837-853. https://doi.org/10.1016/S0140-6736(98)07019-6
  4. Clissold SP, Edwards C. 1998. Acarbose. A preliminary review of its pharmacodynamic and pharmacokinetic properties, and therapeutic potential. Drugs 35: 214-243.
  5. Saito N, Sakai H, Suzuki S, Sekihara H, Yajima Y. 1998. Effect of an alpha-glucosidase inhibitor (voglibose), in combination with sulphonylureas, on glycaemic control in type 2 diabetes patients. J Int Med Res 26: 219-232. https://doi.org/10.1177/030006059802600501
  6. Raj Bhandari M, Jong-Anurakkun N, Hong G, Kawabata J. 2008. $\alpha$-Glucosidase and $\alpha$-amylase inhibitory activities of Nepalese medicinal herb Pakhanbhed (Bergenia ciliata, Haw.). Food Chem 106: 247-252. https://doi.org/10.1016/j.foodchem.2007.05.077
  7. Lebovitz HE. 2002. Treating hyperglycemia in type 2 diabetes: new goals and strategies. Cleve Clin J Med 69: 809-820. https://doi.org/10.3949/ccjm.69.10.809
  8. Carroll MF, Gutierrez A, Castro M, Tsewang D, Schade DS. 2003. Targeting postprandial hyperglycemia: a comparative study of insulinotropic agents in type 2 diabetes. J Clin Endocrinol Metab 88: 5248-5254. https://doi.org/10.1210/jc.2003-030649
  9. Fonseca V. 2003. Clinical significance of targeting postprandial and fasting hyperglycemia in managing type 2 diabetes mellitus. Curr Med Res Opin 19: 635-641. https://doi.org/10.1185/030079903125002351
  10. Hanefeld M. 1998. The role of acarbose in the treatment of non-insulin-dependent diabetes mellitus. J Diabetes Complications 12: 228-237. https://doi.org/10.1016/S1056-8727(97)00123-2
  11. Mineur F, De Clerck O, Le Roux A, Maggs CA, Verlaque M. 2010. Polyopes lancifolius (Halymeniales, Rhodophyta), a new component of the Japanese marine flora introduced to Europe. Phycologia 49: 86-96. https://doi.org/10.2216/09-45.1
  12. Kim KY, Nguyen TH, Kurihara H, Kim SM. 2010. $\alpha$- Glucosidase inhibitory activity of bromophenol purified from the red alga Polyopes lancifolia. J Food Sci 75: 145-150.
  13. Kim KY, Nam KA, Kurihara H, Kim SM. 2008. Potent $\alpha$-glucosidase inhibitors purified from the red alga Grateloupia elliptica. Phytochemistry 69: 2820-2825. https://doi.org/10.1016/j.phytochem.2008.09.007
  14. Shibata T, Fujimoto K, Nagayama K, Yamaguchi K, Nakamura T. 2002. Inhibitory activity of brown algal phlorotannins against hyaluronidase. Int J Food Sci Technol 37: 703-709. https://doi.org/10.1046/j.1365-2621.2002.00603.x
  15. Berge JP, Debiton E, Dumay J, Durand P, Barthomeuf C. 2002. In vitro anti-inflammatory and anti-proliferative activity of sulfolipids from the red alga Porphyridium cruentum. J Agric Food Chem 50: 6227-6232. https://doi.org/10.1021/jf020290y
  16. Reddy BS, Sharma C, Mathews L. 1984. Effect of Japanese seaweed (Laminaria angustata) extracts on the mutagenicity of 7,12-dimethylbenz[a]anthracene, a breast carcinogen, and of 3,2'-dimethyl-4-aminobiphenyl, a colon and breast carcinogen. Mutat Res 127: 113-118. https://doi.org/10.1016/0027-5107(84)90011-3
  17. Min SW, Han JS. 2013. Effect of Polyopes lancifolia extract on oxidative stress in human umbilical vein endothelial cells induced by high glucose. Prev Nutr Food Sci 18: 38-44. https://doi.org/10.3746/pnf.2013.18.1.038
  18. Watanabe J, Kawabata J, Kurihara H, Niki R. 1997. Isolation and identification of $\alpha$-glucosidase inhibitors from tochu-cha (Eucommia ulmoides). Biosci Biotechnol Biochem 61: 177-178. https://doi.org/10.1271/bbb.61.177
  19. Li Y, Wen S, Kota BP, Peng G, Li GQ, Yamahara J, Roufogalis BD. 2005. Punica granatum flower extract, a potent $\alpha$-glucosidase inhibitor, improves postprandial hyperglycemia in Zucker diabetic fatty rats. J Ethnopharmacol 99: 239-244. https://doi.org/10.1016/j.jep.2005.02.030
  20. Gholamhoseinian A, Fallah H, Sharifi far F. 2009. Inhibitory effect of methanol extract of Rosa damascena Mill. flowers on $\alpha$-glucosidase activity and postprandial hyperglycemia in normal and diabetic rats. Phytomedicine 16: 935-941. https://doi.org/10.1016/j.phymed.2009.02.020
  21. Kim JS. 2004. Effect of Rhemanniae radix on the hyperglycemic mice induced with streptozotocin. J Korean Soc Food Sci Nutr 33: 1133-1138. https://doi.org/10.3746/jkfn.2004.33.7.1133
  22. Lebovitz HE. 1998. Postprandial hyperglycaemic state: importance and consequences. Diabetes Res Clin Pract 40: S27-S28. https://doi.org/10.1016/S0168-8227(98)00039-4
  23. Krentz AJ, Bailey CJ. 2005. Oral antidiabetic agents: current role in type 2 diabetes mellitus. Drugs 65: 385-411. https://doi.org/10.2165/00003495-200565030-00005
  24. Prashanth D, Padmaja R, Samiulla DS. 2001. Effect of certain plant extracts on {\alpha}$-amylase activity. Fitoterapia 72: 179-181. https://doi.org/10.1016/S0367-326X(00)00281-1
  25. Hanefeld M, Schaper F. 2007. The role of alpha-glucosidase inhibitors (acarbose). In Pharmacotherapy of Diabetes: New Developments Improving Life and Prognosis for Diabetic Patients. Mogensen CE, ed. Springer Science, New York, NY, USA. P 143-152.
  26. Hara Y, Honda M. 1990. The inhibition of $\alpha$-amylase by tea polyphenols. Agric Biol Chem 54: 1939-1945. https://doi.org/10.1271/bbb1961.54.1939
  27. Stern JL, Hagerman AE, Steinberg PD, Mason PK. 1996. Phlorotannin-protein interactions. J Chem Ecol 22: 1877-1899. https://doi.org/10.1007/BF02028510
  28. Pierpoint WS. 1969. o-Quinones formed in plant extracts. Their reactions with amino acids and peptides. J Biochem 112:609-616. https://doi.org/10.1042/bj1120609
  29. Koivisto VA. 1993. Insulin therapy in type II diabetes. Diabetes Care 16: S29-S39. https://doi.org/10.2337/diacare.16.3.29
  30. Ceriello A, Davidson J, Hanefeld M, Leiter L, Monnier L, Owens D, Tajima N, Tuomilehto J; International Prandial Glucose Regulation Study Group. 2006. Postprandial hyperglycaemia and cardiovascular complications of diabetes: an update. Nutr Metab Cardiovasc Dis 16: 453-456. https://doi.org/10.1016/j.numecd.2006.05.006
  31. Inoue I, Takahashi K, Noji S, Awata T, Negishi K, Katayama S. 1997. Acarbose controls postprandial hyperproinsulinemia in non-insulin dependent diabetes mellitus. Diabetes Res Clin Pract 36: 143-151. https://doi.org/10.1016/S0168-8227(97)00045-4

Cited by

  1. Anti-diabetic potential of selected Malaysian seaweeds vol.27, pp.5, 2015, https://doi.org/10.1007/s10811-014-0462-8
  2. Antioxidant and α-glucosidase inhibitor activities of natural compounds isolated from Quercus gilva Blume leaves vol.5, pp.9, 2015, https://doi.org/10.1016/j.apjtb.2015.07.004
  3. Sargassum sagamianum Extract Alleviates Postprandial Hyperglycemia in Diabetic Mice vol.23, pp.2, 2014, https://doi.org/10.3746/pnf.2018.23.2.122
  4. Innovative perspectives on Pulicaria dysenterica extracts: phyto‐pharmaceutical properties, chemical characterization and multivariate analysis vol.99, pp.13, 2019, https://doi.org/10.1002/jsfa.9875
  5. Impact of Household Cooking Techniques on African Nightshade and Chinese Cabbage on Phenolic Compounds, Antinutrients, in vitro Antioxidant, and β-Glucosidase Activity vol.7, pp.None, 2020, https://doi.org/10.3389/fnut.2020.580550
  6. Comprehensive bioactivity and chemical characterization of the endemic plant Scorzonera hieraciifolia Hayek extracts: A promising source of bioactive compounds vol.137, pp.None, 2014, https://doi.org/10.1016/j.foodres.2020.109371
  7. Phenolic Acids from Lycium barbarum Leaves: In Vitro and In Silico Studies of the Inhibitory Activity against Porcine Pancreatic α-Amylase vol.8, pp.11, 2020, https://doi.org/10.3390/pr8111388
  8. Gene ontology enrichment analysis of α-amylase inhibitors from Duranta repens in diabetes mellitus vol.19, pp.2, 2020, https://doi.org/10.1007/s40200-020-00554-9
  9. Insight into Gentisic Acid Antidiabetic Potential Using In Vitro and In Silico Approaches vol.26, pp.7, 2014, https://doi.org/10.3390/molecules26071932
  10. Changes in antinutrients, phenolics, antioxidant activities and in vitro α-glucosidase inhibitory activity in pumpkin leaves (Cucurbita moschata) during different domestic cooking methods vol.30, pp.6, 2021, https://doi.org/10.1007/s10068-021-00916-w