DOI QR코드

DOI QR Code

Microcyle Conidiation in Filamentous Fungi

  • Jung, Boknam (Department of Applied Biology, Dong-A University) ;
  • Kim, Soyeon (Department of Applied Biology, Dong-A University) ;
  • Lee, Jungkwan (Department of Applied Biology, Dong-A University)
  • 투고 : 2014.02.15
  • 심사 : 2014.02.27
  • 발행 : 2014.03.31

초록

The typical life cycle of filamentous fungi commonly involves asexual sporulation after vegetative growth in response to environmental factors. The production of asexual spores is critical in the life cycle of most filamentous fungi. Normally, conidia are produced from vegetative hyphae (termed mycelia). However, fungal species subjected to stress conditions exhibit an extremely simplified asexual life cycle, in which the conidia that germinate directly generate further conidia, without forming mycelia. This phenomenon has been termed as microcycle conidiation, and to date has been reported in more than 100 fungal species. In this review, first, we present the morphological properties of fungi during microcycle conidiation, and divide microcycle conidiation into four simple categories, even though fungal species exhibit a wide variety of morphological differences during microcycle conidiogenesis. Second, we describe the factors that influence microcycle conidiation in various fungal species, and present recent genetic studies that have identified the genes responsible for this process. Finally, we discuss the biological meaning and application of microcycle conidiation.

키워드

참고문헌

  1. Anderson JG, Smith JE. The production of conidiophores and conidia by newly germinated conidia of Aspergillus niger (microcycle conidiation). J Gen Microbiol 1971;69:185-97. https://doi.org/10.1099/00221287-69-2-185
  2. Bosch A, Yantorno O. Microcycle conidiation in the entomopathogenic fungus Beauveria bassiana bals. (vuill.). Process Biochem 1999;34:707-16. https://doi.org/10.1016/S0032-9592(98)00145-9
  3. Ahearm DG, Price D, Simmons RB, Mayo A, Zhang ST, Crow SA Jr. Microcycle conidiation and medusa head conidiophores of aspergilli on indoor construction materials and air filters from hospitals. Mycologia 2007;99:1-6. https://doi.org/10.3852/mycologia.99.1.1
  4. Lapaire CL, Dunkle LD. Microcycle conidiation in Cercospora zeae-maydis. Phytopathology 2003;93:193-9. https://doi.org/10.1094/PHYTO.2003.93.2.193
  5. Maheshwari R. Microcycle conidiation and its genetic basis in Neurospora crassa. J Gen Microbiol 1991;137:2103-15. https://doi.org/10.1099/00221287-137-9-2103
  6. Pintye A, Legler SE, Kiss L. New records of microcyclic conidiogenesis in some powdery mildew fungi. Mycoscience 2011;52:213-6. https://doi.org/10.1007/S10267-010-0093-0
  7. Barclay A. On the life history of a Himalayan Gymnosporangium (G. cunninghamianum n. sp.). Sci Mem Med Off Army India 1890;5:71-8.
  8. Hanlin RT. Microcycle conidiation: a review. Mycoscience 1994;35:113-23. https://doi.org/10.1007/BF02268539
  9. Pažout J, Schröder P. Microcycle conidiation in submerged cultures of Penicillium cyclopium attained without temperature changes. J Gen Microbiol 1988;134:2685-92.
  10. Kølmark HG. Mutants with continuous microcycle conidiation in the filamentous fungus Fusarium solani f. sp. pisi. Mol Gen Genet 1984;198:12-8. https://doi.org/10.1007/BF00328694
  11. Li S, Myung K, Guse D, Donkin B, Proctor RH, Grayburn WS, Calvo AM. FvVE1 regulates filamentous growth, the ratio of microconidia to macroconidia and cell wall formation in Fusarium verticillioides. Mol Microbiol 2006;62:1418-32. https://doi.org/10.1111/j.1365-2958.2006.05447.x
  12. Son H, Kim MG, Min K, Lim JY, Choi GJ, Kim JC, Chae SK, Lee YW. WetA is required for conidiogenesis and conidium maturation in the ascomycete fungus Fusarium graminearum. Eukaryot Cell 2014;13:87-98. https://doi.org/10.1128/EC.00220-13
  13. Pendland JC, Hung SY, Boucias DG. Evasion of host defense by in vivo-produced protoplast-like cells of the insect mycopathogen Beauveria bassiana. J Bacteriol 1993;175:5962-9. https://doi.org/10.1128/jb.175.18.5962-5969.1993
  14. Zhang S, Xia Y. Identification of genes preferentially expressed during microcycle conidiation of Metarhizium anisopliae using suppression subtractive hybridization. FEMS Microbiol Lett 2008;286:71-7. https://doi.org/10.1111/j.1574-6968.2008.01257.x
  15. Zhang S, Peng G, Xia Y. Microcycle conidiation and the conidial properties in the entomopathogenic fungus Metarhizium acridum on agar medium. Biocontrol Sci Technol 2010;20: 809-19. https://doi.org/10.1080/09583157.2010.482201
  16. Sekiguchi J, Gaucher GM, Costerton JW. Microcycle conidiation in Penicillium urticae: an ultrastructural investigation of conidiogenesis. Can J Microbiol 1975;21:2069-83. https://doi.org/10.1139/m75-296
  17. Kiss L, Pintye A, Zséli G, Jankovics T, Szentiványi O, Hafez YM, Cook RT. Microcyclic conidiogenesis in powdery mildews and its association with intracellular parasitism by Ampelomyces. Eur J Plant Pathol 2010;126:445-51. https://doi.org/10.1007/s10658-009-9558-4
  18. Lingappa BT, Lingappa Y. Role of auto-inhibitors in mycelia growth and dimorphism of Glomerella cingulata. J Gen Microbiol 1969;56:35-45. https://doi.org/10.1099/00221287-56-1-35
  19. Slade SJ, Harris RF, Smith CS, Andrews JH. Microcycle conidiation and spore-carrying capacity of Colletotrichum gloeosporioides on solid media. Appl Environ Microbiol 1987; 53:2106-10.
  20. Boosalis MG. Precocious sporulation and longevity of conidia of Helminthosporium sativum in soil. Phytopathology 1962; 52:1172-7.
  21. Rathaiah Y. Stomatal tropism of Cercospora beticola in sugarbeet. Phytopathology 1977;67:358-62.
  22. Grange F, Turian G. Differential deoxyribonucleic acid synthesis during microcycle conidiation in Neurospora crassa. Arch Microbiol 1978;119:257-61. https://doi.org/10.1007/BF00405404
  23. Bell-Pedersen D, Shinohara ML, Loros JJ, Dunlap JC. Circadian clock-controlled genes isolated from Neurospora crassa are late night- to early morning-specific. Proc Natl Acad Sci U S A 1996;93:13096-101. https://doi.org/10.1073/pnas.93.23.13096
  24. Fang W, Pei Y, Bidochka MJ. A regulator of a G protein signaling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 2007;153:1017-25. https://doi.org/10.1099/mic.0.2006/002105-0
  25. Liu J, Cao Y, Xia Y. Mmc, a gene involved in microcycle conidiation of the entomopathogenic fungus Metarhizium anisopliae. J Invertebr Pathol 2010;105:132-8. https://doi.org/10.1016/j.jip.2010.05.012
  26. Calvo AM, Bok J, Brooks W, Keller NP. veA is required for toxin and sclerotial production in Aspergillus parasiticus. Appl Environ Microbiol 2004;70:4733-9. https://doi.org/10.1128/AEM.70.8.4733-4739.2004
  27. Kato N, Brooks W, Calvo AM. The expression of sterigmatocystin and penicillin genes in Aspergillus nidulans is controlled by veA, a gene required for sexual development. Eukaryot Cell 2003;2:1178-86. https://doi.org/10.1128/EC.2.6.1178-1186.2003
  28. Kim HS, Han KY, Kim KJ, Han DM, Jahng KY, Chae KS. The veA gene activates sexual development in Aspergillus nidulans. Fungal Genet Biol 2002;37:72-80. https://doi.org/10.1016/S1087-1845(02)00029-4
  29. Marshall MA, Timberlake WE. Aspergillus nidulans wetA activates spore-specific gene expression. Mol Cell Biol 1991; 11:55-62. https://doi.org/10.1128/MCB.11.1.55
  30. Khurana N, Saxena RK, Gupta R, Kuhad RC. Light-independent conidiation in Trichoderma spp.: a novel approach to microcycle conidiation. World J Microbiol Biotechnol 1993;9:353-6. https://doi.org/10.1007/BF00383079